論文の概要: Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in
Reproducing Kernel Hilbert Spaces
- arxiv url: http://arxiv.org/abs/2402.04613v1
- Date: Wed, 7 Feb 2024 06:30:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 16:25:49.393733
- Title: Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in
Reproducing Kernel Hilbert Spaces
- Title(参考訳): 核ヒルベルト空間におけるf-次元のモロー包絡に対するワッサーシュタイン勾配流
- Authors: Sebastian Neumayer, Viktor Stein, Gabriele Steidl
- Abstract要約: 特性カーネル$K$に付随する2乗最大平均誤差により$f$-divergenceを正規化する。
我々は、ヒルベルト空間のエンベロープに関するよく知られた結果を利用して、MDD規則化された$f$-divergencesの特性を証明した。
我々は Tsallis-$alpha$ divergences を用いた概念実証数値例を提供する。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most commonly used $f$-divergences of measures, e.g., the Kullback-Leibler
divergence, are subject to limitations regarding the support of the involved
measures. A remedy consists of regularizing the $f$-divergence by a squared
maximum mean discrepancy (MMD) associated with a characteristic kernel $K$. In
this paper, we use the so-called kernel mean embedding to show that the
corresponding regularization can be rewritten as the Moreau envelope of some
function in the reproducing kernel Hilbert space associated with $K$. Then, we
exploit well-known results on Moreau envelopes in Hilbert spaces to prove
properties of the MMD-regularized $f$-divergences and, in particular, their
gradients. Subsequently, we use our findings to analyze Wasserstein gradient
flows of MMD-regularized $f$-divergences. Finally, we consider Wasserstein
gradient flows starting from empirical measures and provide
proof-of-the-concept numerical examples with Tsallis-$\alpha$ divergences.
- Abstract(参考訳): 最も一般的に用いられる$f$-divergences of measures(例えば、Kulback-Leiblerの発散)は、関連する措置の支持に関する制限を受ける。
対策は、特性カーネル$K$に付随する2乗最大平均誤差(MMD)によって$f$-divergenceを正規化することである。
本稿では、いわゆるカーネル平均埋め込みを用いて、対応する正規化が $k$ に付随する再生核ヒルベルト空間内のある関数のモロー包含として書き換えられることを示す。
そして、ヒルベルト空間のモローエンベロープのよく知られた結果を利用して、MDD規則化された$f$-divergencesの特性、特にそれらの勾配の証明を行う。
その後,mmdで正規化した$f$-divergencesのwasserstein勾配流を解析した。
最後に,wasserstein勾配流は経験的測度から始まり,tsallis-$\alpha$ divergencesを用いた概念実証数値例を提供する。
関連論文リスト
- Neural Sampling from Boltzmann Densities: Fisher-Rao Curves in the Wasserstein Geometry [1.609940380983903]
正規化されていないボルツマン密度$rho_D$から、$f_t$で与えられるボルツマン曲線を学習することで、サンプリングを行う。
M'at'e と Fleuret に触発されて、f_t$ のみをパラメータ化し、適切な $v_t$ を修正する方法を提案する。
これはランゲヴィン力学に関連するクルバック・リーブラー発散のワッサーシュタインフローに対応する。
論文 参考訳(メタデータ) (2024-10-04T09:54:11Z) - Particle-based Variational Inference with Generalized Wasserstein
Gradient Flow [32.37056212527921]
本稿では一般化ワッサーシュタイン勾配勾配(GWG)と呼ばれるParVIフレームワークを提案する。
GWGが強い収束保証を示すことを示す。
また、収束を加速するためにワッサーシュタイン計量を自動的に選択する適応版も提供する。
論文 参考訳(メタデータ) (2023-10-25T10:05:42Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - An Explicit Expansion of the Kullback-Leibler Divergence along its
Fisher-Rao Gradient Flow [8.052709336750823]
$pirhollback$が複数のモードを示すとき、$pirhollback$は、潜在的な関数とは無関係であることを示す。
私たちは$textKLの明示的な拡張を提供します。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
KL。
論文 参考訳(メタデータ) (2023-02-23T18:47:54Z) - Annihilating Entanglement Between Cones [77.34726150561087]
ローレンツ錐体は、ある種の強いレジリエンス特性を満たす対称基底を持つ唯一の円錐体であることを示す。
我々の証明はローレンツ・コーンの対称性を利用しており、エンタングルメント蒸留のプロトコルに類似した2つの構造を適用している。
論文 参考訳(メタデータ) (2021-10-22T15:02:39Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Moreau-Yosida $f$-divergences [0.0]
$f$-divergencesの変分表現は多くの機械学習アルゴリズムの中心である。
コンパクト計量空間上の確率測度の場合、$f$-divergencesのいわゆるタイトな変動表現を一般化する。
我々は、Kullback-Leibler, reverse Kullback-Leibler, $chi2$, reverse $chi2$, squared Hellinger, Jensen-Shannon, Jeffreys, triangular discrimination and total variation divergencesの変分式の実装を提供する。
論文 参考訳(メタデータ) (2021-02-26T11:46:10Z) - On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
Flow [26.725412498545385]
パラメトリックカーネル化勾配流は、勾配正規化$mathrmMMD$GANにおけるmin-maxゲームに類似していることを示す。
次に、正規化$mathrmMMD$GANにおける生成元の空間上の勾配降下が、対象分布に大域的に収束することを保証する明示的な条件を導出する。
論文 参考訳(メタデータ) (2020-11-04T16:55:00Z) - Metrizing Weak Convergence with Maximum Mean Discrepancies [88.54422104669078]
本稿では、幅広い種類のカーネルに対する確率測度の弱収束を測る最大平均誤差(MMD)を特徴付ける。
我々は、局所コンパクトで非コンパクトなハウスドルフ空間において、有界連続ボレル可測核 k の MMD が確率測度の弱収束を測ることを証明する。
論文 参考訳(メタデータ) (2020-06-16T15:49:33Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
The inequality and non-asymptotic properties of approximation procedure with Polyak-Ruppert averaging。
一定のステップサイズと無限大となる反復数を持つ平均的反復数に対する中心極限定理(CLT)を証明する。
論文 参考訳(メタデータ) (2020-04-09T17:54:18Z) - A diffusion approach to Stein's method on Riemannian manifolds [65.36007959755302]
我々は、ターゲット不変測度を持つ$mathbf M$上の拡散の生成元と、その特徴付けStein演算子との関係を利用する。
我々は、スタイン方程式とその微分に解を束縛するスタイン因子を導出する。
我々は、$mathbf M$ が平坦多様体であるとき、$mathbb Rm$ の有界が有効であることを暗示する。
論文 参考訳(メタデータ) (2020-03-25T17:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。