論文の概要: On the Impact of Dataset Properties on Membership Privacy of Deep Learning
- arxiv url: http://arxiv.org/abs/2402.06674v2
- Date: Wed, 12 Jun 2024 10:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 22:53:54.964991
- Title: On the Impact of Dataset Properties on Membership Privacy of Deep Learning
- Title(参考訳): 深層学習におけるデータセット特性が会員プライバシに及ぼす影響について
- Authors: Marlon Tobaben, Joonas Jälkö, Gauri Pradhan, Yuan He, Antti Honkela,
- Abstract要約: 我々は、細調整された大規模な画像分類モデルの実用的プライバシー脆弱性をテストするために、最先端の会員推論攻撃(MIA)を適用した。
データ内のクラス毎の例数とMIA脆弱性との間には強力な電力法則が依存していることがわかった。
線形モデルを用いて、データセットの特性に基づいて真の正の確率を予測し、未知のデータに対するMIA脆弱性をよく観察する。
- 参考スコア(独自算出の注目度): 9.334117596250007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We apply a state-of-the-art membership inference attack (MIA) to systematically test the practical privacy vulnerability of fine-tuning large image classification models. We focus on understanding the properties of data sets and samples that make them vulnerable to membership inference. In terms of data set properties, we find a strong power law dependence between the number of examples per class in the data and the MIA vulnerability, as measured by true positive rate of the attack at a low false positive rate. We train a linear model to predict true positive rate based on data set properties and observe good fit for MIA vulnerability on unseen data. To analyse the phenomenon theoretically, we reproduce the result on a simplified model of membership inference that behaves similarly to our experimental data. We prove that in this model, the logarithm of the difference of true and false positive rates depends linearly on the logarithm of the number of examples per class.For an individual sample, the gradient norm is predictive of its vulnerability.
- Abstract(参考訳): 我々は,大規模画像分類モデルの実用的プライバシ脆弱性を系統的に検証するために,最先端のメンバシップ推論攻撃(MIA)を適用した。
我々は、メンバーシップ推論に弱いデータセットとサンプルの特性を理解することに重点を置いている。
データセット特性の面では、攻撃の正の真の正の率を低い偽陽性のレートで測定すると、データ中のクラス毎の例数とMIA脆弱性との間に強い電力法的依存がある。
線形モデルを用いて、データセットの特性に基づいて真の正の確率を予測し、未知のデータに対するMIA脆弱性をよく観察する。
この現象を理論的に解析するために,実験データと同様に振る舞う簡易なメンバーシップ推論モデルを用いて,結果を再現する。
このモデルでは、真と偽の正の比率の差の対数は、クラス毎のサンプル数の対数に依存することが証明され、個々のサンプルでは、勾配ノルムはその脆弱性を予測できる。
関連論文リスト
- Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
本稿では、金融における小売クレジットスコアリングに使用される機械学習(ML)モデルの検証と説明のための新しい方向性と方法論について述べる。
提案するフレームワークは人工知能(AI)のセキュリティと敵MLの分野からモチベーションを引き出す。
論文 参考訳(メタデータ) (2020-08-24T00:05:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
この動作を駆動するトレーニングデータの2つの重要な特性を特定します。
モデルの"記憶"に対する帰納的バイアスが,パラメータ化の超過を損なう可能性を示す。
論文 参考訳(メタデータ) (2020-05-09T01:59:13Z) - Data and Model Dependencies of Membership Inference Attack [13.951470844348899]
我々は、データとMLモデル特性の両方がMIAに対するML手法の脆弱性に与える影響を実証分析する。
この結果から,MIAの精度とデータセットの特性と使用中のトレーニングモデルとの関係が明らかになった。
我々は,これらのデータとモデル特性をレギュレータとして利用し,MLモデルをMIAに対して保護することを提案する。
論文 参考訳(メタデータ) (2020-02-17T09:35:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。