論文の概要: Twenty Constructionist Things to Do with Artificial Intelligence and
Machine Learning
- arxiv url: http://arxiv.org/abs/2402.06775v1
- Date: Fri, 9 Feb 2024 20:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 19:18:50.120802
- Title: Twenty Constructionist Things to Do with Artificial Intelligence and
Machine Learning
- Title(参考訳): 人工知能と機械学習ですべき20人の建設者
- Authors: Yasmin Kafai, Luis Morales-Navarro
- Abstract要約: 1971年、Seymour Papert と Cynthia Solomon のメモ "Twenty Things to Do with a Computer" を制作した。
いくつかの提案はオリジナルのメモで開発されたアイデアに基づいており、他の提案は新しいもので、科学、数学、芸術のトピックに対処している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we build on the 1971 memo "Twenty Things to Do With a
Computer" by Seymour Papert and Cynthia Solomon and propose twenty
constructionist things to do with artificial intelligence and machine learning.
Several proposals build on ideas developed in the original memo while others
are new and address topics in science, mathematics, and the arts. In reviewing
the big themes, we notice a renewed interest in children's engagement not just
for technical proficiency but also to cultivate a deeper understanding of their
own cognitive processes. Furthermore, the ideas stress the importance of
designing personally relevant AI/ML applications, moving beyond isolated models
and off-the-shelf datasets disconnected from their interests. We also
acknowledge the social aspects of data production involved in making AI/ML
applications. Finally, we highlight the critical dimensions necessary to
address potential harmful algorithmic biases and consequences of AI/ML
applications.
- Abstract(参考訳): 本稿では,Seymour Papert と Cynthia Solomon による1971 年のメモ "Twenty Things to Do with a Computer" を基に構築し,人工知能と機械学習に関する20の建設的事項を提案する。
いくつかの提案はオリジナルのメモで開発されたアイデアに基づいており、他の提案は科学、数学、芸術のトピックを扱っている。
大規模テーマのレビューでは,技術能力だけでなく,自身の認知過程の理解を深めるために,子どものエンゲージメントへの関心が高まっている。
さらに、このアイデアは、個人が関連するAI/MLアプリケーションを設計することの重要性を強調しており、分離されたモデルを超えて、棚外のデータセットが関心から切り離されている。
また、AI/MLアプリケーション作成に関わるデータ生産の社会的側面も認めます。
最後に、AI/MLアプリケーションの潜在的有害なアルゴリズムバイアスと結果に対処するために必要な臨界次元を強調します。
関連論文リスト
- Artificial Intelligence from Idea to Implementation. How Can AI Reshape the Education Landscape? [0.0]
論文は、AI技術が理論的構成から、教育的アプローチや学生のエンゲージメントを変える実践的なツールへとどのように移行してきたかを示す。
このエッセイは、教育におけるAIの可能性について議論し、技術的進歩と社会的意味の両方を考慮するバランスのとれたアプローチの必要性を強調することで締めくくられている。
論文 参考訳(メタデータ) (2024-07-14T04:40:16Z) - What About the Data? A Mapping Study on Data Engineering for AI Systems [0.0]
AIシステムのためのデータ準備方法を知っているデータエンジニアの必要性はますます高まっている。
2019年1月から2023年6月までの間に25の関連論文を発見し、AIデータエンジニアリング活動について説明した。
本稿では,AIのデータ工学に関する知識の体系について概観する。
論文 参考訳(メタデータ) (2024-02-07T16:31:58Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - What Students Can Learn About Artificial Intelligence -- Recommendations
for K-12 Computing Education [0.0]
デジタルトランスフォーメーションの文脈における技術進歩は、人工知能(AI)分野における急速な発展の基礎である
AIのトピックを含むように、コンピュータサイエンスカリキュラムの数が増えている。
本稿では,デジタルリテラシーと社会的視点に対処する学習目的のカリキュラムを提案する。
論文 参考訳(メタデータ) (2023-05-10T20:39:43Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering [0.0]
高性能コンピューティングにより、重要なパラメータでディープラーニング(DL)モデルをテストできるようになった。
GAN(Generative Adversarial Network)は、無機材料の化学組成の生成を促進する。
既存の分析機器からの結果を分析するためのAIの利用についても論じる。
論文 参考訳(メタデータ) (2022-09-15T04:21:07Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
我々は、MAPs研究プログラムの一環として、新しい素材の探索を加速する同じシミュレーションとAIツールが、根本的に新しいコンピュータ媒体の設計を可能にすると論じている。
シミュレーションに基づくMAPプログラムの概要を述べる。
我々は、材料研究者と計算機科学者の革新的なコラボレーションの新たな時代を導入することを期待している。
論文 参考訳(メタデータ) (2022-08-17T23:03:54Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
我々は、AI技術のこのような新しい機能を使用して、AI測定能力を増強することを提案する。
我々は倫理的問題や関心事に関連する出版物を分類するモデルを訓練する。
私たちは、AIメトリクス、特に信頼できる公正なAIベースのツールや技術開発への彼らの貢献の意味を強調します。
論文 参考訳(メタデータ) (2021-07-26T00:26:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。