論文の概要: Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data
- arxiv url: http://arxiv.org/abs/2502.02682v1
- Date: Tue, 04 Feb 2025 19:50:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:24:05.959906
- Title: Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data
- Title(参考訳): Pseudo-Physics-Informed Neural Operators: 限られたデータから演算子学習を促進する
- Authors: Keyan Chen, Yile Li, Da Long, Zhitong Xu, Wei Xing, Jacob Hochhalter, Shandian Zhe,
- Abstract要約: PPI-NO(Pseudo Physics-Informed Neural Operator)フレームワークを提案する。
PPI-NOは、基本微分作用素から導かれる偏微分方程式(PDE)を用いて、対象系に対する代理物理系を構築する。
このフレームワークは,データ共有シナリオにおける標準演算子学習モデルの精度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 17.835190275166408
- License:
- Abstract: Neural operators have shown great potential in surrogate modeling. However, training a well-performing neural operator typically requires a substantial amount of data, which can pose a major challenge in complex applications. In such scenarios, detailed physical knowledge can be unavailable or difficult to obtain, and collecting extensive data is often prohibitively expensive. To mitigate this challenge, we propose the Pseudo Physics-Informed Neural Operator (PPI-NO) framework. PPI-NO constructs a surrogate physics system for the target system using partial differential equations (PDEs) derived from simple, rudimentary physics principles, such as basic differential operators. This surrogate system is coupled with a neural operator model, using an alternating update and learning process to iteratively enhance the model's predictive power. While the physics derived via PPI-NO may not mirror the ground-truth underlying physical laws -- hence the term ``pseudo physics'' -- this approach significantly improves the accuracy of standard operator learning models in data-scarce scenarios, which is evidenced by extensive evaluations across five benchmark tasks and a fatigue modeling application.
- Abstract(参考訳): ニューラル作用素は代理モデリングに大きな可能性を示している。
しかし、良好なパフォーマンスのニューラル演算子をトレーニングするには、通常かなりの量のデータを必要とするため、複雑なアプリケーションでは大きな課題が生じる可能性がある。
このようなシナリオでは、詳細な物理知識は利用できないか入手が困難であり、広範囲なデータを収集することは、しばしば違法に高価である。
この課題を軽減するために,PPI-NO(Pseudo Physics-Informed Neural Operator)フレームワークを提案する。
PPI-NOは、基本微分作用素のような単純で初歩的な物理原理から導かれる偏微分方程式(PDE)を用いて、ターゲット系に対する代理物理系を構築する。
このサロゲートシステムは、モデルの予測力を反復的に増強するために、交互更新と学習プロセスを使用して、ニューラル演算子モデルと結合される。
PPI-NOによって導かれる物理は、基礎となる物理法則を反映していない可能性があるため、「擬似物理学」という用語は、データ共有シナリオにおける標準的な演算子学習モデルの精度を著しく向上させる。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
for Complex Material Responses [12.454290779121383]
本研究では,データから非局所法則を学習するPNO(Peridynamic Neural Operator)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
このニューラル作用素は、客観性と運動量バランス法則が自動的に保証される状態ベースペリダイナミックスという形でフォワードモデルを提供する。
複雑な応答をキャプチャする能力により、学習したニューラル演算子はベースラインモデルと比較して精度と効率が向上することを示した。
論文 参考訳(メタデータ) (2024-01-11T17:37:20Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
モデル統合ニューラルネットワーク(MINN)と呼ばれる新しい機械学習アーキテクチャを提案する。
MINNは偏微分代数方程式(PDAE)からなる一般自律系または非自律系の物理に基づくダイナミクスを学ぶ
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - INO: Invariant Neural Operators for Learning Complex Physical Systems
with Momentum Conservation [8.218875461185016]
基本保存法則が自動的に保証される物理モデルを学ぶために,新しい統合ニューラル演算子アーキテクチャを導入する。
応用例として、合成データセットと実験データセットの両方から複雑な物質挙動を学習する際のモデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-12-29T16:40:41Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。