論文の概要: Physics-informed machine learning as a kernel method
- arxiv url: http://arxiv.org/abs/2402.07514v2
- Date: Wed, 19 Jun 2024 07:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 05:29:03.355188
- Title: Physics-informed machine learning as a kernel method
- Title(参考訳): カーネル手法としての物理インフォームド機械学習
- Authors: Nathan Doumèche, Francis Bach, Gérard Biau, Claire Boyer,
- Abstract要約: 経験的リスクを偏微分方程式で正則化する一般回帰問題を考える。
カーネル理論の利点を生かして、正規化リスクの最小化に対する収束率を導出する。
物理誤差に応じて高速な速度が達成可能であることを示す。
- 参考スコア(独自算出の注目度): 7.755962782612672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed machine learning combines the expressiveness of data-based approaches with the interpretability of physical models. In this context, we consider a general regression problem where the empirical risk is regularized by a partial differential equation that quantifies the physical inconsistency. We prove that for linear differential priors, the problem can be formulated as a kernel regression task. Taking advantage of kernel theory, we derive convergence rates for the minimizer of the regularized risk and show that it converges at least at the Sobolev minimax rate. However, faster rates can be achieved, depending on the physical error. This principle is illustrated with a one-dimensional example, supporting the claim that regularizing the empirical risk with physical information can be beneficial to the statistical performance of estimators.
- Abstract(参考訳): 物理インフォームド機械学習は、データベースのアプローチの表現性と物理モデルの解釈可能性を組み合わせる。
この文脈では、物理の不整合を定量化する偏微分方程式により経験的リスクが正規化される一般的な回帰問題を考える。
線形微分先行問題に対して、この問題はカーネル回帰タスクとして定式化できることを示す。
カーネル理論の利点を生かして、正規化リスクの最小化に対する収束率を導出し、少なくともソボレフのミニマックスレートで収束することを示す。
しかし、物理誤差に応じて高速な速度が達成できる。
この原理は1次元の例で説明され、物理情報による経験的リスクの規則化は、推定器の統計的性能に有益である、という主張を支持する。
関連論文リスト
- Physics-informed kernel learning [7.755962782612672]
本稿では,物理インフォームド・リスク関数を最小化するトラクタブルな推定器を提案する。
PIKLは精度と計算時間の両方で物理インフォームドニューラルネットワークより優れていることを示す。
論文 参考訳(メタデータ) (2024-09-20T06:55:20Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
我々は、異なる、しかし相関のある特徴に基づいて訓練された一般化線形モデルの集合における揺らぎの研究の理論を開発する。
一般凸損失と高次元限界における正則化のための経験的リスク最小化器の結合分布の完全な記述を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:44:58Z) - Long Story Short: Omitted Variable Bias in Causal Machine Learning [26.60315380737132]
我々は、幅広い共通因果パラメータに対する省略変数バイアスの理論を開発する。
省略変数の最大説明力に対する簡易な妥当性判定は,バイアスの大きさを限定するのに十分であることを示す。
本研究では,現代の機械学習アルゴリズムを応用して推定を行う,フレキシブルで効率的な統計的推論手法を提案する。
論文 参考訳(メタデータ) (2021-12-26T15:38:23Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEMは、支配方程式に強制を埋め込むことによって、事前モデルの誤特定を認める。
この方法は、観測されたデータ生成過程を最小限の情報損失で再構築する。
本稿では、下層の密度共分散行列の低ランク近似を埋め込むことで、このハードルを克服する。
論文 参考訳(メタデータ) (2021-09-10T09:51:43Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Towards Understanding Generalization via Decomposing Excess Risk
Dynamics [13.4379473119565]
一般化力学を解析してアルゴリズム依存境界(安定性など)を導出する。
ニューラルネットは、ノイズの嵌合時に緩やかな収束率を示すという観測から着想を得て、余剰リスクダイナミクスを分解することを提案する。
分解の枠組みの下では、新しい境界は安定性に基づく境界と一様収束境界よりも理論的および経験的証拠とよく一致している。
論文 参考訳(メタデータ) (2021-06-11T03:42:45Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。