論文の概要: Physics-informed kernel learning
- arxiv url: http://arxiv.org/abs/2409.13786v1
- Date: Fri, 20 Sep 2024 06:55:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:13:17.361263
- Title: Physics-informed kernel learning
- Title(参考訳): 物理インフォームドカーネル学習
- Authors: Nathan Doumèche, Francis Bach, Gérard Biau, Claire Boyer,
- Abstract要約: 本稿では,物理インフォームド・リスク関数を最小化するトラクタブルな推定器を提案する。
PIKLは精度と計算時間の両方で物理インフォームドニューラルネットワークより優れていることを示す。
- 参考スコア(独自算出の注目度): 7.755962782612672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed machine learning typically integrates physical priors into the learning process by minimizing a loss function that includes both a data-driven term and a partial differential equation (PDE) regularization. Building on the formulation of the problem as a kernel regression task, we use Fourier methods to approximate the associated kernel, and propose a tractable estimator that minimizes the physics-informed risk function. We refer to this approach as physics-informed kernel learning (PIKL). This framework provides theoretical guarantees, enabling the quantification of the physical prior's impact on convergence speed. We demonstrate the numerical performance of the PIKL estimator through simulations, both in the context of hybrid modeling and in solving PDEs. In particular, we show that PIKL can outperform physics-informed neural networks in terms of both accuracy and computation time. Additionally, we identify cases where PIKL surpasses traditional PDE solvers, particularly in scenarios with noisy boundary conditions.
- Abstract(参考訳): 物理インフォームド機械学習は、データ駆動項と偏微分方程式(PDE)正則化の両方を含む損失関数を最小化することにより、物理先行を学習プロセスに統合するのが一般的である。
問題をカーネル回帰タスクとして定式化することに基づいて、Fourier法を用いて関連するカーネルを近似し、物理インフォームドリスク関数を最小化するトラクタブルな推定器を提案する。
このアプローチを物理インフォームド・カーネル・ラーニング(PIKL)と呼ぶ。
この枠組みは理論的な保証を提供し、収束速度に対する物理前の影響の定量化を可能にする。
シミュレーションによるPIKL推定器の数値性能をハイブリッドモデリングとPDEの解法の両方で示す。
特に、PIKLは、精度と計算時間の両方において、物理インフォームドニューラルネットワークより優れていることを示す。
さらに, PIKL が従来の PDE ソルバを超えている場合, 特にノイズのある境界条件のシナリオにおいて同定する。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Neural oscillators for generalization of physics-informed machine
learning [1.893909284526711]
物理インフォームド機械学習(PIML)の最大の課題は、トレーニング領域を超えた一般化である。
本稿では,PIMLの一般化能力の向上をめざし,実用的で現実的な応用を促進することを目的とする。
我々は、PDEソリューションの因果性と時間的逐次特性を利用して、反復的なニューラルアーキテクチャを持つPIMLモデルを融合する。
論文 参考訳(メタデータ) (2023-08-17T13:50:03Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
論文 参考訳(メタデータ) (2021-10-26T00:10:57Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
物理インフォームドディープカーネル学習(PI-DKL)は、遅延源を持つ微分方程式で表される物理知識を利用する。
効率的かつ効果的な推論のために、潜伏変数を疎外し、崩壊したモデルエビデンスローバウンド(ELBO)を導出する。
論文 参考訳(メタデータ) (2020-06-08T22:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。