論文の概要: An interpretation of the Brownian bridge as a physics-informed prior for the Poisson equation
- arxiv url: http://arxiv.org/abs/2503.00213v1
- Date: Fri, 28 Feb 2025 21:57:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:03.009629
- Title: An interpretation of the Brownian bridge as a physics-informed prior for the Poisson equation
- Title(参考訳): ポアソン方程式の物理インフォームドとしてのブラウン橋の解釈
- Authors: Alex Alberts, Ilias Bilionis,
- Abstract要約: ブラウン橋のガウス過程は、ポアソン方程式に先立って、柔らかく強化された物理学的に制約されたものとして見ることができる。
この接続により、逆問題の収束や振舞いなど、異なる理論的問題を探索することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Physics-informed machine learning is one of the most commonly used methods for fusing physical knowledge in the form of partial differential equations with experimental data. The idea is to construct a loss function where the physical laws take the place of a regularizer and minimize it to reconstruct the underlying physical fields and any missing parameters. However, there is a noticeable lack of a direct connection between physics-informed loss functions and an overarching Bayesian framework. In this work, we demonstrate that Brownian bridge Gaussian processes can be viewed as a softly-enforced physics-constrained prior for the Poisson equation. We first show equivalence between the variational form of the physics-informed loss function for the Poisson equation and a kernel ridge regression objective. Then, through the connection between Gaussian process regression and kernel methods, we identify a Gaussian process for which the posterior mean function and physics-informed loss function minimizer agree. This connection allows us to probe different theoretical questions, such as convergence and behavior of inverse problems. We also connect the method to the important problem of identifying model-form error in applications.
- Abstract(参考訳): 物理インフォームド・機械学習は、実験データを用いた偏微分方程式の形で物理知識を融合させる最も一般的な手法の1つである。
この考え方は、物理法則が正規化子の代わりに成り立つ損失関数を構築し、基礎となる物理場と欠落パラメータを再構築するためにそれを最小化することである。
しかし、物理学的インフォームド・ロス関数とオーバーアーキッド・ベイズ・フレームワークの間には、直接接続が存在しないことは顕著である。
本研究は,ポアソン方程式に先立って軟弱に強化された物理過程として,ブラウン橋のガウス過程を見ることができることを実証する。
まず,ポアソン方程式の物理インフォームド損失関数の変分形式とカーネルリッジ回帰目標との等価性を示す。
そして、ガウス過程の回帰とカーネル法との接続により、後続平均関数と物理インフォームド損失関数最小化器が一致するガウス過程を同定する。
この接続により、逆問題の収束や振舞いなど、異なる理論的問題を探索することができる。
また,本手法は,アプリケーションにおけるモデル形式の誤りを識別する重要な問題と結合する。
関連論文リスト
- Bayesian Model Parameter Learning in Linear Inverse Problems with Application in EEG Focal Source Imaging [49.1574468325115]
逆問題は、関心のシグナルを直接観測できない限定データ問題として記述することができる。
未知の非線形モデルパラメータを含む線形逆問題について検討した。
ベイズモデルに基づく学習手法を用いて,信号の回復とモデルパラメータの推定を行った。
論文 参考訳(メタデータ) (2025-01-07T18:14:24Z) - Physics-informed machine learning as a kernel method [7.755962782612672]
経験的リスクを偏微分方程式で正則化する一般回帰問題を考える。
カーネル理論の利点を生かして、正規化リスクの最小化に対する収束率を導出する。
物理誤差に応じて高速な速度が達成可能であることを示す。
論文 参考訳(メタデータ) (2024-02-12T09:38:42Z) - Fourier Neural Differential Equations for learning Quantum Field
Theories [57.11316818360655]
量子場理論は相互作用ハミルトニアンによって定義され、散乱行列によって実験データにリンクされる。
本稿では,NDEモデルを用いて理論,スカラー・ユーカワ理論,スカラー量子電磁力学を学習する。
理論の相互作用ハミルトニアンは、ネットワークパラメータから抽出することができる。
論文 参考訳(メタデータ) (2023-11-28T22:11:15Z) - About optimal loss function for training physics-informed neural
networks under respecting causality [0.0]
物理インフォームドニューラルネットワーク(PINN)手法に修正問題を用いることの利点は、微分方程式に関連付けられた単一の項の形で損失関数を表現できることである。
提案手法の精度を実証し,多くの問題に対して数値実験を行った。
論文 参考訳(メタデータ) (2023-04-05T08:10:40Z) - Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification [0.0]
情報場理論(IFT)は、必ずしもガウス的ではない分野の統計を行うために必要なツールを提供する。
IFT を物理インフォームド IFT (PIFT) に拡張し,フィールドを記述する物理法則に関する情報を符号化する。
このPIFTから派生した後部は任意の数値スキームとは独立であり、複数のモードをキャプチャすることができる。
本手法は,物理が信頼できないことを正確に認識し,その場合,フィールドの学習を回帰問題として自動的に処理する。
論文 参考訳(メタデータ) (2023-01-18T15:40:19Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - A Combined Data-driven and Physics-driven Method for Steady Heat
Conduction Prediction using Deep Convolutional Neural Networks [39.46616349629182]
本稿では,加速学習とより正確な解法を併用して提案する。
データ駆動型手法では、物理方程式の導入は収束を高速化するだけでなく、物理的に一貫した解を生成することができる。
物理駆動法では, 結合法は, あまり制約のない粗い基準を用いることで, 収束を49.0%まで高速化できることがわかった。
論文 参考訳(メタデータ) (2020-05-16T22:29:37Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。