論文の概要: Piecewise Polynomial Tensor Network Quantum Feature Encoding
- arxiv url: http://arxiv.org/abs/2402.07671v4
- Date: Thu, 12 Sep 2024 11:23:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:12:50.435724
- Title: Piecewise Polynomial Tensor Network Quantum Feature Encoding
- Title(参考訳): Piecewise Polynomial Tensor Network Quantum Feature Encoding
- Authors: Mazen Ali, Matthias Kabel,
- Abstract要約: この研究は、連続変数を断片的特徴によって量子回路に埋め込む新しい方法を紹介している。
提案手法は,量子アルゴリズムの適用範囲を広げることを目的として,ポリノミアルネットワーク量子特徴量TNQFEと呼ぶ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a novel method for embedding continuous variables into quantum circuits via piecewise polynomial features, utilizing low-rank tensor networks. Our approach, termed Piecewise Polynomial Tensor Network Quantum Feature Encoding (PPTNQFE), aims to broaden the applicability of quantum algorithms by incorporating spatially localized representations suited for numerical applications like partial differential equations and function regression. We demonstrate the potential of PPTNQFE through efficient point evaluations of solutions of discretized differential equations and in modeling functions with localized features such as jump discontinuities. While promising, challenges such as unexplored noise impact and design of trainable circuits remain. This study opens new avenues for enhancing quantum models with novel feature embeddings and leveraging TN representations for a wider array of function types in quantum machine learning.
- Abstract(参考訳): この研究は、低ランクテンソルネットワークを利用して、量子回路に連続変数を埋め込む新しい方法を紹介した。
PPTNQFE(Piecewise Polynomial Tensor Network Quantum Feature Encoding)と呼ばれる我々のアプローチは、偏微分方程式や関数回帰といった数値的な応用に適した空間的局所化表現を組み込むことで、量子アルゴリズムの適用性を拡大することを目的としている。
我々は、離散微分方程式の解の効率的な点評価と、ジャンプ不連続のような局所的特徴を持つモデル関数によるPTTNQFEの可能性を示す。
将来性はあるものの、未探索ノイズの影響やトレーニング可能な回路の設計といった課題は残されている。
本研究は、新しい特徴埋め込みによる量子モデルの拡張と、量子機械学習におけるより広範な関数型に対するTN表現の活用のための新たな道を開く。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Circuit-Efficient Qubit-Excitation-based Variational Quantum Eigensolver [7.865137519552981]
本稿では,浅帯域波動関数 Ansatze を構築するための2体Qubit-Excitation-Based (QEB) 演算子の実装について述べる。
この研究は電子構造の量子シミュレーションに大きな可能性を示し、現在の量子ハードウェアの性能を改善した。
論文 参考訳(メタデータ) (2024-06-17T16:16:20Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits [16.460585387762478]
量子ニューラルネットワークの有望なアプローチとして、PQC(ized quantum circuits)が登場した。
本稿では,一般関数クラスを近似するためのPQCの表現性について検討する。
我々は、量子ビット数、量子回路深さ、およびトレーニング可能なパラメータ数の観点から、これらの関数に対する最初の非漸近近似誤差境界を確立する。
論文 参考訳(メタデータ) (2023-10-11T14:29:11Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。