論文の概要: Arbitrary Polynomial Separations in Trainable Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2402.08606v1
- Date: Tue, 13 Feb 2024 17:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 14:29:38.787692
- Title: Arbitrary Polynomial Separations in Trainable Quantum Machine Learning
- Title(参考訳): 学習可能な量子機械学習における任意多項式分離
- Authors: Eric R. Anschuetz and Xun Gao
- Abstract要約: 量子機械学習の最近の理論的結果は、量子ニューラルネットワーク(QNN)の表現力とトレーニング可能性との一般的なトレードオフを示している。
ここでは、これらの否定的な結果を回避するために、非条件で証明可能なメモリ分離を示すQNNを効率的に訓練する階層を構築する。
量子文脈性(quantum contextuality)が表現性分離の源であることが示され、量子機械学習における現実的な優位性の存在が示唆された。
- 参考スコア(独自算出の注目度): 1.0080317855851213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent theoretical results in quantum machine learning have demonstrated a
general trade-off between the expressive power of quantum neural networks
(QNNs) and their trainability; as a corollary of these results, practical
exponential separations in expressive power over classical machine learning
models are believed to be infeasible as such QNNs take a time to train that is
exponential in the model size. We here circumvent these negative results by
constructing a hierarchy of efficiently trainable QNNs that exhibit
unconditionally provable, polynomial memory separations of arbitrary constant
degree over classical neural networks in performing a classical sequence
modeling task. Furthermore, each unit cell of the introduced class of QNNs is
computationally efficient, implementable in constant time on a quantum device.
The classical networks we prove a separation over include well-known examples
such as recurrent neural networks and Transformers. We show that quantum
contextuality is the source of the expressivity separation, suggesting that
other classical sequence learning problems with long-time correlations may be a
regime where practical advantages in quantum machine learning may exist.
- Abstract(参考訳): 量子機械学習の最近の理論的結果は、量子ニューラルネットワーク(QNN)の表現力とトレーニング性の間の一般的なトレードオフを示しており、これらの結果のまとめとして、古典的な機械学習モデルよりも表現力の実用的な指数的な分離は、モデルサイズで指数関数的なトレーニングを行うのに時間がかかると信じられている。
ここでは、古典的シーケンスモデリングタスクを実行する際に、古典的ニューラルネットワーク上で任意の定数次数の多項式メモリ分離を無条件で証明可能な、効率的にトレーニング可能なQNNの階層を構築することにより、これらの負の結果を回避する。
さらに、導入されたQNNの各単位セルは、計算効率が高く、量子デバイス上で一定時間に実装可能である。
古典的なネットワークは、リカレントニューラルネットワークやトランスフォーマーなどのよく知られた例を含む。
量子文脈性(quantum contextity)は、表現性分離の源であり、長い時間相関を持つ他の古典列学習問題は、量子機械学習の実用的優位性が存在する可能性を示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Efficient and quantum-adaptive machine learning with fermion neural
networks [8.537841858846082]
入力が初期層として組み込まれると、物理特性が出力として機能するフェルミオンニューラルネットワーク(FNN)を提案する。
我々は、FNNに挑戦する機械学習ベンチマークの競合性能を付与する効率的な最適化を確立する。
論文 参考訳(メタデータ) (2022-11-10T19:00:02Z) - Interpretable Quantum Advantage in Neural Sequence Learning [2.575030923243061]
非ガウス測度を用いたガウス演算に基づくニューラルネットワーク列モデルと反復モデルとの相対表現力について検討した。
我々は、2つのモデルクラスの表現性において、無条件メモリ分離の源として量子テクスチュアリティ(quantum contextuality)を指摘する。
このようにして、我々の導入した量子モデルが、実際にさえも古典的モデルの状態を上回り得ることを実証する。
論文 参考訳(メタデータ) (2022-09-28T18:34:04Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
量子機械学習は、量子力学と機械学習の共生から生まれる。
古典的な機械学習を量子物理学問題に適用するためのツールとして使う。
量子パーセプトロンの力学に基づく量子ニューラルネットワークの設計と、短絡の断熱への応用は、短時間の動作時間と堅牢な性能をもたらす。
論文 参考訳(メタデータ) (2021-05-27T16:20:50Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。