Universal Machine Learning Kohn-Sham Hamiltonian for Materials
- URL: http://arxiv.org/abs/2402.09251v2
- Date: Mon, 15 Apr 2024 06:20:55 GMT
- Title: Universal Machine Learning Kohn-Sham Hamiltonian for Materials
- Authors: Yang Zhong, Hongyu Yu, Jihui Yang, Xingyu Guo, Hongjun Xiang, Xingao Gong,
- Abstract summary: This study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices.
We demonstrate its generality in predicting electronic structures across the whole periodic table.
By offering a reliable framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields.
- Score: 5.189794091596078
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn-Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate ML models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moir\'e twisted bilayer heterostructure, and metal-organic frameworks (MOFs). Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GeNOME datasets, identifying 3,940 crystals with direct band gaps and 5,109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.
FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.
We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Large Language Models Are Innate Crystal Structure Generators [30.44669215588058]
We show that pre-trained Large Language Models can inherently generate stable crystal structures without additional training.
Our framework MatLLMSearch integrates pre-trained LLMs with evolutionary search algorithms, achieving a 78.38% metastable rate.
arXiv Detail & Related papers (2025-02-28T10:41:16Z) - Materials Learning Algorithms (MALA): Scalable Machine Learning for Electronic Structure Calculations in Large-Scale Atomistic Simulations [2.04071520659173]
We present the Materials Learning Algorithms (MALA) package, a scalable machine learning framework suitable for large-scale atomistic simulations.
MALA models efficiently predict key electronic observables, including local density of states, electronic density, density of states, and total energy.
We demonstrate MALA's capabilities with examples including boron clusters, aluminum across its solid-liquid phase boundary, and predicting the electronic structure of a stacking fault in a large beryllium slab.
arXiv Detail & Related papers (2024-11-29T11:10:29Z) - Electronic Correlations in Multielectron Silicon Quantum Dots [0.3793387630509845]
Silicon metal-oxide-semiconductor based quantum dots present a promising pathway for realizing practical quantum computers.
Hartree-Fock theory is an imperative tool for the electronic structure modelling of multi-electron quantum dots.
We present a Hartree-Fock-based method that accounts for these complexities for the modelling of silicon quantum dots.
arXiv Detail & Related papers (2024-07-05T06:46:38Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Simulating challenging correlated molecules and materials on the
Sycamore quantum processor [0.0]
Simulating complex molecules and materials is an anticipated application of quantum devices.
We simulate static and dynamical electronic structure on a superconducting quantum processor.
Our work serves to convert artificial measures of quantum advantage into a physically relevant setting.
arXiv Detail & Related papers (2022-03-29T07:11:40Z) - Machine learning based prediction of the electronic structure of
quasi-one-dimensional materials under strain [0.0]
We present a machine learning based model that can predict the electronic structure of quasi-one-dimensional materials.
This technique applies to important classes of materials such as nanotubes, nanoribbons, nanowires and nano-assemblies.
arXiv Detail & Related papers (2022-02-02T09:32:03Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.