論文の概要: Exploring the Potential of Large Language Models in Artistic Creation:
Collaboration and Reflection on Creative Programming
- arxiv url: http://arxiv.org/abs/2402.09750v1
- Date: Thu, 15 Feb 2024 07:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:42:26.015273
- Title: Exploring the Potential of Large Language Models in Artistic Creation:
Collaboration and Reflection on Creative Programming
- Title(参考訳): 芸術創造における大規模言語モデルの可能性を探る:創造的プログラミングにおけるコラボレーションとリフレクション
- Authors: Anqi Wang, Zhizhuo Yin, Yulu Hu, Yuanyuan Mao, Pan Hui
- Abstract要約: プログラム全体を呼び出し、複数のサブタスクを発行する、という2つの一般的なコラボレーションアプローチを比較します。
本研究は,アーティストの異なる刺激反射を2つの異なる方法で示すものである。
創造的コーディングにおけるLLMの芸術的可能性を明らかにする。
- 参考スコア(独自算出の注目度): 10.57792673254363
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, the potential of large language models (LLMs) has been widely used
in assisting programming. However, current research does not explore the artist
potential of LLMs in creative coding within artist and AI collaboration. Our
work probes the reflection type of artists in the creation process with such
collaboration. We compare two common collaboration approaches: invoking the
entire program and multiple subtasks. Our findings exhibit artists' different
stimulated reflections in two different methods. Our finding also shows the
correlation of reflection type with user performance, user satisfaction, and
subjective experience in two collaborations through conducting two methods,
including experimental data and qualitative interviews. In this sense, our work
reveals the artistic potential of LLM in creative coding. Meanwhile, we provide
a critical lens of human-AI collaboration from the artists' perspective and
expound design suggestions for future work of AI-assisted creative tasks.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) の可能性はプログラミング支援に広く利用されている。
しかし、現在の研究は、アーティストとaiのコラボレーションにおける創造的なコーディングにおけるllmのアーティストの可能性を探求していない。
我々の研究は、そのようなコラボレーションによって創造過程におけるリフレクションタイプのアーティストを探索する。
プログラム全体と複数のサブタスクを呼び出すという,2つの一般的なコラボレーションアプローチを比較した。
本研究はアーティストの異なる刺激反射を2つの異なる方法で示す。
また,実験データと質的インタビューを含む2つの手法を用いて,2つのコラボレーションにおけるリフレクションタイプとユーザパフォーマンス,ユーザ満足度,主観的体験の相関性を示す。
この意味で、創造的コーディングにおけるLLMの芸術的可能性を明らかにする。
一方、アーティストの視点からの人間とAIのコラボレーションの批判的なレンズを提供し、AI支援の創造的タスクの将来的な仕事のための設計提案を述べる。
関連論文リスト
- Expertise elevates AI usage: experimental evidence comparing laypeople and professional artists [1.5296069874080693]
生成AIを用いて芸術家と一般人の芸術的能力を比較する。
平均して、アーティストは彼らの通常の作品よりも忠実でクリエイティブなアウトプットを生み出した。
AIはコンテンツ作成を楽にするかもしれないが、専門家の専門知識は依然として価値がある。
論文 参考訳(メタデータ) (2025-01-21T18:53:21Z) - Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art [90.8684263806649]
視覚芸術の創造において、AIが人間の認知的限界を超越する方法を示します。
我々の研究は、視覚芸術には膨大な未探索の概念的組み合わせが含まれているという仮説を立てている。
本稿では,人間の認知能力を超えた概念の組み合わせを同定し,生成するエイリアン組換え法を提案する。
論文 参考訳(メタデータ) (2024-11-18T11:55:38Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
美術品の分析は、個人の審美性を豊かにし、批判的思考能力を促進することができる芸術鑑賞のための重要かつ基本的な技術である。
アートワークを自動解析する以前の作業は、主に分類、検索、その他の単純なタスクに焦点を当てており、AIの目標とは程遠い。
LLaVAアーキテクチャに基づいて微調整されたGalleryGPTと呼ばれる,絵画解析のための優れた大規模マルチモーダルモデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T11:52:56Z) - Equivalence: An analysis of artists' roles with Image Generative AI from Conceptual Art perspective through an interactive installation design practice [16.063735487844628]
本研究では、アーティストが高度なテキストから画像生成AIモデルとどのように相互作用するかを検討する。
この枠組みを実証するために,「等価性」と題されたケーススタディでは,ユーザの音声入力を連続的に変化する絵画に変換する。
この研究は、アーティストの役割に対する理解を深め、画像生成AIで作成されたアートに固有の創造的側面に対する深い評価を促進することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T02:45:23Z) - Luminate: Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation [19.62178304006683]
現在のインタラクションパラダイムは不足しており、限られたアイデアの集合に対して、ユーザを迅速なコンバージェンスへと導くものだ、と私たちは主張する。
本研究では,ユーザがシームレスに探索し,評価し,多数の応答を合成できる設計空間の構造化を促進するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:53:14Z) - Interactive Neural Painting [66.9376011879115]
本稿では,対話型ニューラルペイント(NP)の最初のアプローチを提案する。
2段デコーダを用いた条件変圧器変分自動エンコーダ(VAE)アーキテクチャに基づく新しい手法であるI-Paintを提案する。
実験の結果,本手法は良好なストローク提案を提供し,最先端技術と比較した。
論文 参考訳(メタデータ) (2023-07-31T07:02:00Z) - "It Felt Like Having a Second Mind": Investigating Human-AI
Co-creativity in Prewriting with Large Language Models [20.509651636971864]
本研究では,前書き中の人間-LLM協調パターンとダイナミクスについて検討する。
共同作業では,3段階の反復的Human-AI共同創造プロセスが存在するようだ。
論文 参考訳(メタデータ) (2023-07-20T16:55:25Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
我々は、幅広いコンピュータビジョンタスクをモデル化できる統一的なアプローチであるUViMを紹介する。
以前のモデルとは対照的に、UViMは全てのタスクに対して同じ機能を持つ。
多様な3つの視覚課題に対するUViMの有効性を実証する。
論文 参考訳(メタデータ) (2022-05-20T17:47:59Z) - Understanding and Creating Art with AI: Review and Outlook [12.614901374282868]
人工知能(AI)に関連する技術は、視覚芸術における研究と創造的実践の変化に強い影響を与える。
本稿では,AIとアートの2つの側面を総合的にレビューする:1)AIはアート分析に使用され,デジタル化されたアートコレクションに使用される;2)AIは創造的な目的に使用され,新しいアート作品を生成する。
アートの創造におけるAIの役割に関して、AIアートの様々な実践的・理論的側面に対処し、それらのトピックを詳細に扱った関連作品を統合します。
論文 参考訳(メタデータ) (2021-02-18T01:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。