論文の概要: Rapid Bayesian identification of sparse nonlinear dynamics from scarce
and noisy data
- arxiv url: http://arxiv.org/abs/2402.15357v1
- Date: Fri, 23 Feb 2024 14:41:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 14:23:20.582972
- Title: Rapid Bayesian identification of sparse nonlinear dynamics from scarce
and noisy data
- Title(参考訳): 希少データと雑音データからのスパース非線形ダイナミクスの高速ベイズ同定
- Authors: Lloyd Fung, Urban Fasel, Matthew P. Juniper
- Abstract要約: 我々はベイジアンフレームワーク内でSINDy法をリキャストし、ガウス近似を用いて計算を高速化する。
ベイジアン・シンディは推定したパラメータの不確かさを定量化するが、限られたノイズのあるデータから正しいモデルを学ぶ際にもより堅牢である。
- 参考スコア(独自算出の注目度): 2.5870115809699787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a fast probabilistic framework for identifying differential
equations governing the dynamics of observed data. We recast the SINDy method
within a Bayesian framework and use Gaussian approximations for the prior and
likelihood to speed up computation. The resulting method, Bayesian-SINDy, not
only quantifies uncertainty in the parameters estimated but also is more robust
when learning the correct model from limited and noisy data. Using both
synthetic and real-life examples such as Lynx-Hare population dynamics, we
demonstrate the effectiveness of the new framework in learning correct model
equations and compare its computational and data efficiency with existing
methods. Because Bayesian-SINDy can quickly assimilate data and is robust
against noise, it is particularly suitable for biological data and real-time
system identification in control. Its probabilistic framework also enables the
calculation of information entropy, laying the foundation for an active
learning strategy.
- Abstract(参考訳): 本研究では,観測データのダイナミクスを規定する微分方程式を高速確率的に同定する枠組みを提案する。
我々は,sindy法をベイズフレームワーク内で再キャストし,計算の高速化のためにガウス近似を用いる。
その結果、ベイズ・シンディ法は推定パラメータの不確かさを定量化するだけでなく、限定データや雑音データから正しいモデルを学ぶ際により頑健になる。
我々は,Lynx-Hare集団力学のような合成と実生活の例を用いて,正しいモデル方程式の学習における新しいフレームワークの有効性を示し,その計算とデータ効率を既存手法と比較する。
Bayesian-SINDy はデータを素早く同化でき、ノイズに対して堅牢であるため、生物学的データやリアルタイムシステム識別に特に適している。
その確率的フレームワークは情報エントロピーの計算を可能にし、アクティブな学習戦略の基礎を築いた。
関連論文リスト
- Discovery and inversion of the viscoelastic wave equation in inhomogeneous media [3.6864706261549127]
現在のスパース回帰法はスパースおよびノイズデータセット上の不正確な方程式を特定することができる。
探索と埋め込みという2つの交互方向最適化フェーズを組み合わせたハイブリッドフレームワークを提案する。
提案手法は, 高レベルの騒音に直面しても, 優れたロバスト性と精度を示す。
論文 参考訳(メタデータ) (2024-09-27T01:05:45Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
我々は、基礎となるモデルの無条件シミュレーションを用いて訓練できるニューラルな可能性近似を構築した。
本手法は,多くの生態学的および疫学的モデルを用いて推定を行うことにより実証する。
論文 参考訳(メタデータ) (2023-10-19T07:51:39Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDyは時系列データから類似の動的モデルや方程式を発見するためのフレームワークである。
自動微分と最近のRudyらによって制約されたタイムステッピングを統合したSINDyアルゴリズムの変種を開発する。
本手法は,ガウス分布,一様分布,ガンマ分布,レイリー分布などの確率分布の多様性を同定できることを示す。
論文 参考訳(メタデータ) (2020-09-12T23:52:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。