論文の概要: Employing LLMs for Incident Response Planning and Review
- arxiv url: http://arxiv.org/abs/2403.01271v1
- Date: Sat, 2 Mar 2024 17:23:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:29:47.049569
- Title: Employing LLMs for Incident Response Planning and Review
- Title(参考訳): LLMを用いたインシデント対応計画と見直し
- Authors: Sam Hays, Dr. Jules White,
- Abstract要約: 効果的なサイバーセキュリティ管理には、インシデント対応計画(IRP)が不可欠である。
しかし、包括的なIRPの作成は、複雑なシステム、高いターンオーバ率、ドキュメントの欠如といった課題に悩まされることが多い。
本稿では,ChatGPTのようなLarge Language Models (LLMs)を活用することで,IRPの開発,レビュー,改良が大幅に向上できると主張している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incident Response Planning (IRP) is essential for effective cybersecurity management, requiring detailed documentation (or playbooks) to guide security personnel during incidents. Yet, creating comprehensive IRPs is often hindered by challenges such as complex systems, high turnover rates, and legacy technologies lacking documentation. This paper argues that, despite these obstacles, the development, review, and refinement of IRPs can be significantly enhanced through the utilization of Large Language Models (LLMs) like ChatGPT. By leveraging LLMs for tasks such as drafting initial plans, suggesting best practices, and identifying documentation gaps, organizations can overcome resource constraints and improve their readiness for cybersecurity incidents. We discuss the potential of LLMs to streamline IRP processes, while also considering the limitations and the need for human oversight in ensuring the accuracy and relevance of generated content. Our findings contribute to the cybersecurity field by demonstrating a novel approach to enhancing IRP with AI technologies, offering practical insights for organizations seeking to bolster their incident response capabilities.
- Abstract(参考訳): インシデント対応計画(IRP)は、効果的なサイバーセキュリティ管理に不可欠であり、インシデント中のセキュリティ担当者をガイドするために詳細なドキュメント(またはプレイブック)を必要とする。
しかし、包括的なIRPの作成は、複雑なシステム、高いターンオーバ率、ドキュメントの欠如といった課題に悩まされることが多い。
本稿では、これらの障害にもかかわらず、ChatGPTのようなLarge Language Models(LLM)を利用することで、IRPの開発、レビュー、洗練を著しく向上させることができると論じる。
最初の計画の起草、ベストプラクティスの提案、ドキュメントギャップの特定といったタスクにLLMを活用することで、企業はリソースの制約を克服し、サイバーセキュリティインシデントに対する準備性を向上させることができる。
我々は,ILPプロセスの合理化に向けたLCMの可能性を考察するとともに,生成したコンテンツの正確性と関連性を確保するため,人間の監視の限界と必要性を考察する。
我々の発見は、AI技術でIRPを強化する新しいアプローチを実証し、インシデント対応能力を強化しようとする組織に実践的な洞察を提供することによって、サイバーセキュリティ分野に寄与する。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Alignment of Cybersecurity Incident Prioritisation with Incident Response Management Maturity Capabilities [0.0]
本稿では,高リスク事象の優先順位付けにIR CMMsアセスメントの活用の可能性について検討する。
その結果,不適切な訓練やコミュニケーション不足など,インシデント応答に共通する弱点が明らかになった。
この分析はまた、インシデント対応能力を高める上での組織文化の重要性を強調している。
論文 参考訳(メタデータ) (2024-10-03T07:05:47Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Current state of LLM Risks and AI Guardrails [0.0]
大規模言語モデル(LLM)はますます洗練され、安全性と信頼性が最優先されるセンシティブなアプリケーションに広くデプロイされるようになる。
これらのリスクは、LSMを望ましい行動と整合させ、潜在的な害を軽減するために、"ガードレール"の開発を必要とする。
本研究は,LLMの展開に伴うリスクを調査し,ガードレールの実装とモデルアライメント技術に対する現在のアプローチを評価する。
論文 参考訳(メタデータ) (2024-06-16T22:04:10Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Safe and Robust Reinforcement Learning: Principles and Practice [0.0]
強化学習は比較的複雑なタスクの解決に顕著な成功を収めた。
現実のシナリオにおけるRLシステムのデプロイは、安全性と堅牢性に関する重大な課題を生じさせる。
本稿では, アルゴリズム, 倫理的, 実践的考察を含む安全で堅牢なRL景観の主次元について考察する。
論文 参考訳(メタデータ) (2024-03-27T13:14:29Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.927763944523323]
大規模言語モデル(LLM)は、自然言語処理(NLP)のランドスケープを大きく変えた。
本研究は,5つのテーマの観点から,LLMに関するセキュリティとプライバシの懸念を徹底的に調査する。
本稿は, LLMの安全性とリスク管理を強化するために, 今後の研究に期待できる道筋を提案する。
論文 参考訳(メタデータ) (2024-03-19T07:10:58Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。