Empirical learning of dynamical decoupling on quantum processors
- URL: http://arxiv.org/abs/2403.02294v2
- Date: Thu, 02 Jan 2025 20:47:48 GMT
- Title: Empirical learning of dynamical decoupling on quantum processors
- Authors: Christopher Tong, Helena Zhang, Bibek Pokharel,
- Abstract summary: Dynamical decoupling (DD) is a low-overhead method for quantum error suppression.
We show how learning algorithms can empirically tailor DD strategies for any quantum circuit and device.
- Score: 0.24578723416255752
- License:
- Abstract: Dynamical decoupling (DD) is a low-overhead method for quantum error suppression. Despite extensive work in DD design, finding pulse sequences that optimally decouple computational qubits on noisy quantum hardware is not well understood. In this work, we describe how learning algorithms can empirically tailor DD strategies for any quantum circuit and device. We use a genetic algorithm-inspired search to optimize DD (GADD) strategies for IBM's superconducting-qubit based quantum processors. In all observed experimental settings, we find that empirically learned DD strategies significantly improve error suppression relative to canonical sequences, with relative improvement increasing with problem size and circuit sophistication. We leverage this to study mirror randomized benchmarking on 100 qubits, GHZ state preparation on 50 qubits, and the Bernstein-Vazirani algorithm on 27 qubits. We further demonstrate that our empirical learning method finds strategies, in time constant with increasing circuit width and depth, that provide stable performance over long periods of time without retraining and generalize to larger circuits when trained on small sub-circuit structures.
Related papers
- AI-Powered Algorithm-Centric Quantum Processor Topology Design [10.53761034955718]
We introduce a novel approach to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits.
Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology.
arXiv Detail & Related papers (2024-12-18T12:53:16Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
We present a novel algorithm "Adaptive Circuit Learning of Born Machine" (ACLBM)
Our algorithm is tailored to selectively integrate two-qubit entangled gates that best capture the complex entanglement present within the target state.
Empirical results underscore the proficiency of our approach in encoding real-world data through amplitude embedding.
arXiv Detail & Related papers (2023-11-29T16:47:31Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Effects of Dynamical Decoupling and Pulse-level Optimizations on IBM
Quantum Computers [0.0]
Dynamical decoupling (DD) is generally used to suppress the decoherence error.
pulse-level optimization can be improved by creating hardware-native pulse-efficient gates.
This paper implements all the popular DD sequences and evaluates their performances on IBM quantum chips.
arXiv Detail & Related papers (2022-04-04T13:37:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Qubit-efficient entanglement spectroscopy using qubit resets [0.0]
We develop qubit-efficient quantum algorithms for entanglement spectroscopy on NISQ devices.
Our algorithms use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise.
We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets.
arXiv Detail & Related papers (2020-10-06T23:22:57Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.