論文の概要: Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images
- arxiv url: http://arxiv.org/abs/2403.10040v1
- Date: Fri, 15 Mar 2024 06:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:29:12.349289
- Title: Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images
- Title(参考訳): 病理組織学的全スライス画像を用いた癌予後診断のための組織学的知識蒸留法
- Authors: Zhikang Wang, Yumeng Zhang, Yingxue Xu, Seiya Imoto, Hao Chen, Jiangning Song,
- Abstract要約: ゲノムインフォームドハイパーアテンションネットワーク(G-HANet)は、トレーニング中にヒストリーゲノム知識を効果的に蒸留することができる。
ネットワークは、クロスモーダル・アソシエーション・ブランチ(CAB)とハイパーアテンション・サバイバル・ブランチ(HSB)から構成される。
- 参考スコア(独自算出の注目度): 7.5123289730388825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histo-genomic multi-modal methods have recently emerged as a powerful paradigm, demonstrating significant potential for improving cancer prognosis. However, genome sequencing, unlike histopathology imaging, is still not widely accessible in underdeveloped regions, limiting the application of these multi-modal approaches in clinical settings. To address this, we propose a novel Genome-informed Hyper-Attention Network, termed G-HANet, which is capable of effectively distilling the histo-genomic knowledge during training to elevate uni-modal whole slide image (WSI)-based inference for the first time. Compared with traditional knowledge distillation methods (i.e., teacher-student architecture) in other tasks, our end-to-end model is superior in terms of training efficiency and learning cross-modal interactions. Specifically, the network comprises the cross-modal associating branch (CAB) and hyper-attention survival branch (HSB). Through the genomic data reconstruction from WSIs, CAB effectively distills the associations between functional genotypes and morphological phenotypes and offers insights into the gene expression profiles in the feature space. Subsequently, HSB leverages the distilled histo-genomic associations as well as the generated morphology-based weights to achieve the hyper-attention modeling of the patients from both histopathology and genomic perspectives to improve cancer prognosis. Extensive experiments are conducted on five TCGA benchmarking datasets and the results demonstrate that G-HANet significantly outperforms the state-of-the-art WSI-based methods and achieves competitive performance with genome-based and multi-modal methods. G-HANet is expected to be explored as a useful tool by the research community to address the current bottleneck of insufficient histo-genomic data pairing in the context of cancer prognosis and precision oncology.
- Abstract(参考訳): ヒスト・ゲノミクスのマルチモーダル法は近年、強力なパラダイムとして登場し、がんの予後を改善する重要な可能性を示している。
しかし、ゲノムシークエンシングは、病理組織像とは異なり、まだ未発達の地域では広くアクセスできないため、臨床環境におけるこれらのマルチモーダルアプローチの適用は制限されている。
そこで本研究では,G-HANetと呼ばれる新しいゲノムインフォームドハイパーアテンションネットワークを提案する。このネットワークは,トレーニング中にヒストリーゲノム知識を効果的に蒸留し,一様全スライド画像(WSI)に基づく推論を初めて高めることができる。
従来の知識蒸留法(すなわち教師-学生アーキテクチャ)と比較すると,学習効率や相互モーダル相互作用の学習において,エンド・ツー・エンドのモデルの方が優れている。
具体的には、クロスモーダル・アソシエーション・ブランチ(CAB)とハイパーアテンション・サバイバル・ブランチ(HSB)とからなる。
WSIsからのゲノムデータ再構成を通じて、CABは機能的遺伝子型と形態的表現型との関係を効果的に蒸留し、特徴空間における遺伝子発現プロファイルに関する洞察を提供する。
その後、HSBは、蒸留されたヒスト・ゲノミクスの関連と、生成されたモルフォロジーに基づく体重を利用して、癌予後を改善するために、病理組織学的およびゲノム学的視点の両方から患者のハイパーアテンションモデリングを実現する。
5つのTCGAベンチマークデータセットで大規模な実験を行い、G-HANetは最先端のWSIベースの手法よりも優れており、ゲノムベースの手法とマルチモーダルな手法との競合性能を実現していることを示した。
G-HANetは、がん予後と精密腫瘍学の文脈において、不十分なヒストリノミクスデータペアリングのボトルネックに対処するために、研究コミュニティが有用なツールとして検討されることが期待されている。
関連論文リスト
- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Omnimodal Learning(GTP-4o)のためのモダリティプロンプト不均質グラフ
我々は、Omnimodal Learning(GTP-4o)のための革新的モダリティプロンプト不均質グラフを提案する。
論文 参考訳(メタデータ) (2024-07-08T01:06:13Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioELは、トレーニングコーパス全体から同様のインスタンスを予測のヒントとして参照する機能を備えたBioELモデルを提供する。
k$NN-BioELは、いくつかのデータセットで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-12-15T14:04:23Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome
Prediction using Integrative Histopathology-Genomic Features [2.3942863352287787]
Mutual-Guided Cross-Modality Transformer (MGCT) は、注意に基づくマルチモーダル学習フレームワークである。
腫瘍微小環境における遺伝子型-フェノタイプ相互作用をモデル化するために,組織学的特徴とゲノム的特徴を組み合わせたMGCTを提案する。
論文 参考訳(メタデータ) (2023-11-20T10:49:32Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Cancer-inspired Genomics Mapper Model for the Generation of Synthetic
DNA Sequences with Desired Genomics Signatures [0.0]
がんに触発されたゲノムマッパーモデル(CGMM)は、遺伝的アルゴリズム(GA)とディープラーニング(DL)の手法を組み合わせたものである。
我々はCGMMが、祖先や癌などの選択された表現型の合成ゲノムを生成できることを実証した。
論文 参考訳(メタデータ) (2023-05-01T07:16:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
本稿では,新しい生物学的経路インフォームド・病理-ゲノム深層モデルであるPONETを提案する。
提案手法は優れた予測性能を達成し,有意義な生物学的解釈を明らかにする。
論文 参考訳(メタデータ) (2023-01-06T05:24:41Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
本稿では,異なるタイプのマルチオミックデータを解析するための混合グラフィカルモデルを提案する。
モデル選択結果の計算効率と精度の両面で,本手法が優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-08T16:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。