論文の概要: Effectiveness of the syndrome extraction circuit with flag qubits on IBM quantum hardware
- arxiv url: http://arxiv.org/abs/2403.10217v1
- Date: Fri, 15 Mar 2024 11:36:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:30:38.889213
- Title: Effectiveness of the syndrome extraction circuit with flag qubits on IBM quantum hardware
- Title(参考訳): フラグ量子ビットを用いたシンドローム抽出回路のIBM量子ハードウェアへの応用
- Authors: Younghun Kim, Hansol Kim, Jeongsoo Kang, Wonjae Choi, Younghun Kwon,
- Abstract要約: 我々は,IBM量子コンピュータ上でフラグ量子ビットを用いたシンドローム抽出回路の実装に成功したことを報告した。
データキュービットはシンドロームキュービットに隣接していないが、繰り返し符号の距離が増加するにつれて論理誤差率は指数関数的に減少する。
これは、IBM量子コンピュータ上のフラグ量子ビットを用いたシンドローム抽出回路の実装が成功したことを確認する。
- 参考スコア(独自算出の注目度): 3.658358071310729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale quantum circuits are required to exploit the advantages of quantum computers. Present-day quantum computers have become less reliable with increasing depths of quantum circuits. To overcome this limitation, quantum error-correction codes have been introduced. Although the success of quantum error correction codes has been announced in Google[1, 2] and neutral atom[3] quantum computers, there have been no reports on IBM quantum computers showing error suppression owing to its unique heavy-hexagon structure. This structure restricts connectivity, and quantum error-correction codes on IBM quantum computers require flag qubits. Here, we report the successful implementation of a syndrome extraction circuit with flag qubits on IBM quantum computers. Moreover, we demonstrate its effectiveness by considering the repetition code as a test code among the quantum error-correcting codes. Even though the data qubit is not adjacent to the syndrome qubit, logical error rates diminish exponentially as the distance of the repetition code increases from three to nine. Even when two flag qubits exist between the data and syndrome qubits, the logical error rates decrease as the distance increases similarly. This confirms the successful implementation of the syndrome extraction circuit with flag qubits on the IBM quantum computer.
- Abstract(参考訳): 量子コンピュータの利点を利用するには大規模量子回路が必要である。
現在の量子コンピュータは、量子回路の深さが増加するにつれて信頼性が低下している。
この制限を克服するため、量子誤り訂正符号が導入された。
Google[1, 2]と中性原子[3]量子コンピュータで量子エラー訂正符号が成功したことは発表されているが、IBMの量子コンピュータでは独自の重六角形構造による誤りの抑制が報告されていない。
この構造は接続を制限し、IBM量子コンピュータ上の量子エラー訂正符号はフラグ量子ビットを必要とする。
本稿では,IBM量子コンピュータ上でフラグ量子ビットを用いたシンドローム抽出回路の実装に成功したことを報告する。
さらに,量子誤り訂正符号の繰り返しコードをテストコードとして検討し,その有効性を示す。
データキュービットはシンドロームキュービットに隣接していないが、繰り返し符号の距離が3から9に増加するにつれて論理誤差は指数関数的に減少する。
データとシンドロームの量子ビットの間に2つのフラグ量子ビットが存在するとしても、距離が同様に増加するにつれて論理誤差は減少する。
これは、IBM量子コンピュータ上のフラグ量子ビットを用いたシンドローム抽出回路の実装が成功したことを確認する。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
スケーラブルでプログラム可能な量子コンピュータは、コンピュータが合理的な時間枠で達成できない計算集約的なタスクを解く可能性を持ち、量子優位性を達成する。
現在の量子プロセッサのエラーに対する脆弱性は、実用的な問題に必要な複雑で深い量子回路の実行に重大な課題をもたらす。
我々の研究は、現在の世代の量子ハードウェアを用いた超伝導体ベースのプロセッサにおいて、論理的CNOTゲートとエラー検出を併用できる可能性を確立した。
論文 参考訳(メタデータ) (2024-06-18T04:50:15Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
我々は,既存のトラップイオンコンピュータの実装のための量子エラー検出コードを開発した。
k$論理量子ビットを$k+2$物理量子ビットに符号化することにより、フォールトトレラントな状態初期化とシンドローム測定回路を提示する。
論文 参考訳(メタデータ) (2022-11-12T16:46:35Z) - Quantum Entanglement with Self-stabilizing Token Ring for Fault-tolerant
Distributed Quantum Computing System [0.0]
本稿では,自己安定化トークンリングアルゴリズムを用いて,n量子ビットの量子絡み合い状態を構築する方法を示す。
絡み合った状態は、量子ネットワーク、量子インターネット、分散量子コンピューティング、量子クラウドの分野に適用することができる。
論文 参考訳(メタデータ) (2022-09-23T01:20:36Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum error correction with silicon spin qubits [0.0]
大規模量子コンピュータは、脆弱な量子情報を保護するために量子エラー補正に依存する。
シリコンベースの量子ビットの最近の進歩により、高品質な1と2の量子ビットシステムの実装が可能になった。
ここでは、シリコン中の3量子位相補正符号を示し、符号化された3量子状態は、3量子状態のうちの1つの位相フリップ誤差に対して保護される。
論文 参考訳(メタデータ) (2022-01-21T07:59:49Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z) - Testing a Quantum Error-Correcting Code on Various Platforms [5.0745290104790035]
本稿では,検出振幅減衰チャネルに対する簡単な量子誤り訂正符号を提案する。
我々は,光プラットフォーム,IBM Qシステム,核磁気共鳴システム上でのエンコーディング,チャネル,リカバリを実装している。
論文 参考訳(メタデータ) (2020-01-22T13:15:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。