論文の概要: Hessian-Free Laplace in Bayesian Deep Learning
- arxiv url: http://arxiv.org/abs/2403.10671v1
- Date: Fri, 15 Mar 2024 20:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:24:30.294914
- Title: Hessian-Free Laplace in Bayesian Deep Learning
- Title(参考訳): ベイジアンディープラーニングにおけるヘッセンフリーラプラス
- Authors: James McInerney, Nathan Kallus,
- Abstract要約: Hessian-free Laplace (HFL)近似は、その分散を推定するために、ログ後部とネットワーク予測の両方の曲率を使用する。
ベイズ深層学習におけるLAの標準的な仮定の下では、HFLはLAと同じ分散を目標とし、事前学習されたネットワークで効率よく再生可能であることを示す。
- 参考スコア(独自算出の注目度): 44.16006844888796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Laplace approximation (LA) of the Bayesian posterior is a Gaussian distribution centered at the maximum a posteriori estimate. Its appeal in Bayesian deep learning stems from the ability to quantify uncertainty post-hoc (i.e., after standard network parameter optimization), the ease of sampling from the approximate posterior, and the analytic form of model evidence. However, an important computational bottleneck of LA is the necessary step of calculating and inverting the Hessian matrix of the log posterior. The Hessian may be approximated in a variety of ways, with quality varying with a number of factors including the network, dataset, and inference task. In this paper, we propose an alternative framework that sidesteps Hessian calculation and inversion. The Hessian-free Laplace (HFL) approximation uses curvature of both the log posterior and network prediction to estimate its variance. Only two point estimates are needed: the standard maximum a posteriori parameter and the optimal parameter under a loss regularized by the network prediction. We show that, under standard assumptions of LA in Bayesian deep learning, HFL targets the same variance as LA, and can be efficiently amortized in a pre-trained network. Experiments demonstrate comparable performance to that of exact and approximate Hessians, with excellent coverage for in-between uncertainty.
- Abstract(参考訳): ベイジアン後方のラプラス近似(Laplace approximation, LA)は、最大アフター推定を中心にしたガウス分布である。
ベイズ深層学習におけるその魅力は、不確実性ポストホック(例えば、標準的なネットワークパラメータ最適化後の)の定量化能力、近似後部からのサンプリングの容易さ、モデルエビデンスの分析形式に起因している。
しかし、LAの重要な計算ボトルネックは、ログ後部のヘッセン行列を計算・反転するために必要なステップである。
Hessianはさまざまな方法で近似でき、ネットワーク、データセット、推論タスクなど、さまざまな要因によって品質が変化する。
本稿では,ヘシアン計算と逆変換を補助する代替フレームワークを提案する。
Hessian-free Laplace (HFL)近似は、その分散を推定するために、ログ後部とネットワーク予測の両方の曲率を使用する。
ネットワーク予測によって正規化された損失の下では、標準最大余剰パラメータと最適パラメータの2つの点推定しか必要とされない。
ベイズ深層学習におけるLAの標準的な仮定の下では、HFLはLAと同じ分散を目標とし、事前学習されたネットワークで効率よく再生可能であることを示す。
実験では、正確で近似的なヘッセンのものと同等の性能を示し、不確実性に優れたカバレッジを持つ。
関連論文リスト
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
償却点推定器は一般に後部推論より優れているが、後者は低次元問題では競争力がある。
実験の結果, 償却点推定器は一般に後部推定より優れているが, 後者は低次元問題では競争力があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T10:00:24Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Variational Laplace for Bayesian neural networks [25.055754094939527]
Variational Laplaceは、ニューラルネットワークの重みをサンプリングすることなく、ELBOを推定する可能性の局所近似を利用する。
分散パラメータの学習率を増加させることで早期停止を回避できることを示す。
論文 参考訳(メタデータ) (2021-02-27T14:06:29Z) - The Bayesian Method of Tensor Networks [1.7894377200944511]
ネットワークのベイズ的枠組みを2つの観点から検討する。
本研究では,2次元合成データセットにおけるモデルパラメータと決定境界を可視化することにより,ネットワークのベイズ特性について検討する。
論文 参考訳(メタデータ) (2021-01-01T14:59:15Z) - Variational Laplace for Bayesian neural networks [33.46810568687292]
我々はベイズニューラルネットワーク(BNN)のための変分ラプラスを開発する。
我々は,ニューラルネットワークの重みをサンプリングすることなく,ELBOの曲率を局所的に近似し,ELBOを推定する。
分散パラメータの学習率を増大させることにより,早期停止を回避できることを示す。
論文 参考訳(メタデータ) (2020-11-20T15:16:18Z) - Bayesian Deep Learning via Subnetwork Inference [2.2835610890984164]
モデル重みの小さな部分集合に対して推論を行い、正確な予測後部を得るのに十分であることを示す。
このサブネットワーク推論フレームワークは、そのような部分集合に対して表現的で、そうでなければ、引き起こせない後続近似を使用できる。
論文 参考訳(メタデータ) (2020-10-28T01:10:11Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
我々は、ReLUネットワーク上の不確実性に対する十分条件が「少しベイズ校正される」ことを示す。
さらに,これらの知見を,共通深部ReLUネットワークとLaplace近似を用いた各種標準実験により実証的に検証した。
論文 参考訳(メタデータ) (2020-02-24T08:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。