論文の概要: Community detection by spectral methods in multi-layer networks
- arxiv url: http://arxiv.org/abs/2403.12540v1
- Date: Tue, 19 Mar 2024 08:29:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:52:48.441165
- Title: Community detection by spectral methods in multi-layer networks
- Title(参考訳): 多層ネットワークにおけるスペクトル法によるコミュニティ検出
- Authors: Huan Qing,
- Abstract要約: 多層ネットワークにおけるコミュニティ検出は,ネットワーク解析において重要な問題である。
1つのアルゴリズムは隣接行列の和に基づいており、もう1つは2乗隣接行列の偏りの和を利用する。
数値シミュレーションにより, このアルゴリズムは, 多層ネットワークにおける既存のコミュニティ検出手法を超越した2乗隣接行列のデバイアス和を用いていることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection in multi-layer networks is a crucial problem in network analysis. In this paper, we analyze the performance of two spectral clustering algorithms for community detection within the multi-layer degree-corrected stochastic block model (MLDCSBM) framework. One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices. We establish consistency results for community detection using these methods under MLDCSBM as the size of the network and/or the number of layers increases. Our theorems demonstrate the advantages of utilizing multiple layers for community detection. Moreover, our analysis indicates that spectral clustering with the debiased sum of squared adjacency matrices is generally superior to spectral clustering with the sum of adjacency matrices. Numerical simulations confirm that our algorithm, employing the debiased sum of squared adjacency matrices, surpasses existing methods for community detection in multi-layer networks. Finally, the analysis of several real-world multi-layer networks yields meaningful insights.
- Abstract(参考訳): 多層ネットワークにおけるコミュニティ検出は,ネットワーク解析において重要な問題である。
本稿では,MLDCSBM(Multilayer degree-corrected stochastic block model)フレームワークにおけるコミュニティ検出のための2つのスペクトルクラスタリングアルゴリズムの性能を解析する。
1つのアルゴリズムは隣接行列の和に基づいており、もう1つは2乗隣接行列の偏りの和を利用する。
MLDCSBMでは,ネットワークのサイズや層数の増加に伴い,これらの手法を用いたコミュニティ検出の一貫性が確立される。
本定理は,コミュニティ検出に複数の層を利用する利点を実証するものである。
さらに,2乗隣接行列の縮退和によるスペクトルクラスタリングは,概して隣接行列の和によるスペクトルクラスタリングよりも優れていることを示す。
数値シミュレーションにより, このアルゴリズムは, 多層ネットワークにおける既存のコミュニティ検出手法を超越した2乗隣接行列のデバイアス和を用いていることを確認した。
最後に、実世界の複数層ネットワークの解析は有意義な洞察を与える。
関連論文リスト
- Estimating mixed memberships in multi-layer networks [0.0]
多層ネットワークにおけるコミュニティ検出は、現代のネットワーク分析の重要な領域として現れてきた。
多層混合メンバシップブロックモデルにおける共通混合メンバシップを推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T07:02:10Z) - Optimal Clustering of Discrete Mixtures: Binomial, Poisson, Block
Models, and Multi-layer Networks [9.57586103097079]
多層ネットワークが存在する場合のクラスタリングネットワークの基本的限界について検討する。
混合多層ブロックモデル (MMSBM) では, 最適ネットワーククラスタリング誤差率の最小値が指数関数形式であることを示す。
本稿では,ノード分割とサンプル分割の両方を含むテンソルベースアルゴリズムを含む,新しい2段階ネットワーククラスタリング手法を提案する。
論文 参考訳(メタデータ) (2023-11-27T07:48:50Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Community detection in multiplex networks based on orthogonal
nonnegative matrix tri-factorization [26.53951886710295]
我々は,各層に共通するコミュニティと,各層に固有のコミュニティを識別する,新しい多重化コミュニティ検出手法を導入する。
提案アルゴリズムは, 合成および実多重化の両方で評価し, 最先端技術と比較した。
論文 参考訳(メタデータ) (2022-05-02T02:33:15Z) - Spectral clustering via adaptive layer aggregation for multi-layer
networks [6.0073653636512585]
有効凸層アグリゲーションに基づく積分スペクトルクラスタリング手法を提案する。
提案手法は, 広く用いられている手法と比較して, 極めて競争力が高いことを示す。
論文 参考訳(メタデータ) (2020-12-07T21:58:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - Motif-Based Spectral Clustering of Weighted Directed Networks [6.1448102196124195]
クラスタリングは、様々な分野の応用において、ネットワーク分析に不可欠な技術である。
一つのアプローチは、モチーフ隣接行列を用いて高次構造を捕捉し、クラスタ化することである。
本稿では,重み付きネットワーク上での隣接行列のモチーフとして,新しい,計算に有用な行列式を提案する。
論文 参考訳(メタデータ) (2020-04-02T22:45:28Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。