論文の概要: Community detection by spectral methods in multi-layer networks
- arxiv url: http://arxiv.org/abs/2403.12540v2
- Date: Sun, 09 Feb 2025 01:39:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:24:58.368864
- Title: Community detection by spectral methods in multi-layer networks
- Title(参考訳): 多層ネットワークにおけるスペクトル法によるコミュニティ検出
- Authors: Huan Qing,
- Abstract要約: MLDCSBM(Multilayer degree-corrected block model)のフレームワーク内でのコミュニティ検出のための2つのスペクトルクラスタリングアルゴリズムを解析する。
1つのアルゴリズムは隣接行列の和に基づいており、もう1つは2乗隣接行列の偏りの和を利用する。
平均モジュラリティを最大化することにより,コミュニティ多層ネットワークの数を推定する戦略を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Community detection in multi-layer networks is a crucial problem in network analysis. In this paper, we analyze the performance of two spectral clustering algorithms for community detection within the framework of the multi-layer degree-corrected stochastic block model (MLDCSBM) framework. One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices. We also provide their accelerated versions through subsampling to handle large-scale multi-layer networks. We establish consistency results for community detection of the two proposed methods under MLDCSBM as the size of the network and/or the number of layers increases. Our theorems demonstrate the advantages of utilizing multiple layers for community detection. Our analysis also indicates that spectral clustering with the debiased sum of squared adjacency matrices is generally superior to spectral clustering with the sum of adjacency matrices. Furthermore, we provide a strategy to estimate the number of communities in multi-layer networks by maximizing the averaged modularity. Substantial numerical simulations demonstrate the superiority of our algorithm employing the debiased sum of squared adjacency matrices over existing methods for community detection in multi-layer networks, the high computational efficiency of our accelerated algorithms for large-scale multi-layer networks, and the high accuracy of our strategy in estimating the number of communities. Finally, the analysis of several real-world multi-layer networks yields meaningful insights.
- Abstract(参考訳): 多層ネットワークにおけるコミュニティ検出は,ネットワーク解析において重要な問題である。
本稿では,MLDCSBM(Multilayer degree-corrected stochastic block model)フレームワークを用いて,コミュニティ検出のための2つのスペクトルクラスタリングアルゴリズムの性能を解析する。
1つのアルゴリズムは隣接行列の和に基づいており、もう1つは2乗隣接行列の偏りの和を利用する。
また,大規模なマルチレイヤネットワークを扱うために,サブサンプリングによる高速化版も提供する。
ネットワークの規模や層数の増加に伴い, MLDCSBM で提案した2つの手法のコミュニティ検出の一貫性が確立される。
本定理は,コミュニティ検出に複数の層を利用する利点を実証するものである。
また,2乗隣接行列の縮退和によるスペクトルクラスタリングは,概して隣接行列の和によるスペクトルクラスタリングよりも優れていることを示した。
さらに, 平均モジュラリティを最大化することにより, 多層ネットワークにおけるコミュニティ数を推定する戦略を提案する。
現状の数値シミュレーションでは,複数層ネットワークにおけるコミュニティ検出の既存手法に比べて,2乗隣接行列の偏差和を用いたアルゴリズムの優位性,大規模マルチ層ネットワークにおける高速化アルゴリズムの計算効率の向上,およびコミュニティ数推定における我々の戦略の高精度化が示されている。
最後に、実世界の複数層ネットワークの解析は有意義な洞察を与える。
関連論文リスト
- Estimating mixed memberships in multi-layer networks [0.0]
多層ネットワークにおけるコミュニティ検出は、現代のネットワーク分析の重要な領域として現れてきた。
多層混合メンバシップブロックモデルにおける共通混合メンバシップを推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T07:02:10Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Community detection in multiplex networks based on orthogonal
nonnegative matrix tri-factorization [26.53951886710295]
我々は,各層に共通するコミュニティと,各層に固有のコミュニティを識別する,新しい多重化コミュニティ検出手法を導入する。
提案アルゴリズムは, 合成および実多重化の両方で評価し, 最先端技術と比較した。
論文 参考訳(メタデータ) (2022-05-02T02:33:15Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Spectral clustering via adaptive layer aggregation for multi-layer
networks [6.0073653636512585]
有効凸層アグリゲーションに基づく積分スペクトルクラスタリング手法を提案する。
提案手法は, 広く用いられている手法と比較して, 極めて競争力が高いことを示す。
論文 参考訳(メタデータ) (2020-12-07T21:58:18Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Motif-Based Spectral Clustering of Weighted Directed Networks [6.1448102196124195]
クラスタリングは、様々な分野の応用において、ネットワーク分析に不可欠な技術である。
一つのアプローチは、モチーフ隣接行列を用いて高次構造を捕捉し、クラスタ化することである。
本稿では,重み付きネットワーク上での隣接行列のモチーフとして,新しい,計算に有用な行列式を提案する。
論文 参考訳(メタデータ) (2020-04-02T22:45:28Z) - A unified framework for spectral clustering in sparse graphs [47.82639003096941]
正規化ラプラシア行列の便利なパラメータ化形式はスパースネットワークにおけるスペクトルクラスタリングに利用できることを示す。
また、この提案された行列と、現在一般的な非バックトラック行列であるベーテ・ヘッセン行列との間の重要な関係を示す。
論文 参考訳(メタデータ) (2020-03-20T10:58:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。