論文の概要: Leap: molecular synthesisability scoring with intermediates
- arxiv url: http://arxiv.org/abs/2403.13005v1
- Date: Thu, 14 Mar 2024 11:53:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 21:08:57.573592
- Title: Leap: molecular synthesisability scoring with intermediates
- Title(参考訳): Leap: 中間体を用いた分子合成性スコアリング
- Authors: Antonia Calvi, Théophile Gaudin, Dominik Miketa, Dominique Sydow, Liam Wilbraham,
- Abstract要約: 薬物発見における一般的なアプローチは、合成アクセス可能な中間体を取り巻く化学空間を探索することである。
Leapは予測合成経路の深さ、または長い直線経路に基づいて訓練されたGPT-2モデルである。
本稿では,合成可能な分子の同定において,LeapがAUCスコアの少なくとも5%を越えていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing whether a molecule can be synthesised is a primary task in drug discovery. It enables computational chemists to filter for viable compounds or bias molecular generative models. The notion of synthesisability is dynamic as it evolves depending on the availability of key compounds. A common approach in drug discovery involves exploring the chemical space surrounding synthetically-accessible intermediates. This strategy improves the synthesisability of the derived molecules due to the availability of key intermediates. Existing synthesisability scoring methods such as SAScore, SCScore and RAScore, cannot condition on intermediates dynamically. Our approach, Leap, is a GPT-2 model trained on the depth, or longest linear path, of predicted synthesis routes that allows information on the availability of key intermediates to be included at inference time. We show that Leap surpasses all other scoring methods by at least 5% on AUC score when identifying synthesisable molecules, and can successfully adapt predicted scores when presented with a relevant intermediate compound.
- Abstract(参考訳): 分子を合成できるかどうかを評価することが、薬物発見の第一の課題である。
計算化学者は、生存可能な化合物やバイアス分子生成モデルのためにフィルターすることができる。
合成性の概念は、鍵化合物の可利用性に応じて進化するので、動的である。
薬物発見における一般的なアプローチは、合成アクセス可能な中間体を取り巻く化学空間を探索することである。
この戦略は、鍵中間体の可利用性により、導出分子の合成性を向上させる。
SAScore、SCScore、RAScoreなどの既存の合成可能性スコア法は、中間体を動的に条件付けできない。
提案手法であるLeapは、予測合成経路の深さ(長線形経路)に基づいて訓練されたGPT-2モデルであり、キー中間体を推論時に含めることができる。
本稿では、合成可能な分子を同定する際に、LeapがAUCスコアで少なくとも5%以上のスコア法を上回り、関連する中間化合物を提示した場合、予測スコアを順応できることを示す。
関連論文リスト
- SDDBench: A Benchmark for Synthesizable Drug Design [31.739548311094843]
分子合成性を評価するための新しいデータ駆動計量を提案する。
提案したラウンドトリップスコアを用いて,分子の合成経路の実現可能性を直接評価する。
提案手法の有効性を示すため, 分子生成モデルを用いて, 探索成功率とともに, ラウンドトリップスコアの総合評価を行う。
論文 参考訳(メタデータ) (2024-11-13T03:08:33Z) - SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design [1.3927943269211591]
本稿では, サイリコ生成法とin vitroにおける実用的手法のギャップについて考察する。
医薬品の3次元同変エンコーダを用いて、完全に合成可能な分子を生成する新しいMLモデルであるSynthFormerを紹介する。
我々の貢献には、3D情報を用いた効率的な化学空間探索のための新しい方法論、分子に3D薬局表現を翻訳するSynthformerと呼ばれる新しいアーキテクチャ、医薬品発見最適化のための試薬を組織する有意義な埋め込み空間が含まれる。
論文 参考訳(メタデータ) (2024-10-03T17:38:46Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise [0.7045000393120925]
この研究は、機械学習を用いて相対的な合成容易性に基づいて構造をランク付けするFocused Synthesizability score(FSscore)を導入している。
FSscoreは、様々な化学応用のための合成実現可能性の評価を最適化するために、どのようにしてヒト・イン・ザ・ループ・フレームワークを利用できるかを示した。
論文 参考訳(メタデータ) (2023-12-20T03:18:56Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
本研究は,分子発生を極めて促進する分子発生機構であるLIMO(Latent Inceptionism on Molecules)について述べる。
総合的な実験により、LIMOはベンチマークタスクで競争力を発揮することが示された。
生成した薬物様化合物の1つが、ヒトエストロゲン受容体に対して6~14ドルのK_D$を予測している。
論文 参考訳(メタデータ) (2022-06-17T21:05:58Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
両方向の長期記憶ネットワーク(BiLSTM)から抽出された集合を含む、特徴の異なるセットで訓練された複数の複数ラベル分類器を組み合わせることを提案する。
実験はこのアプローチのパワーを実証し、文献で報告された最良の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2021-01-22T19:49:47Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。