論文の概要: Learning-based Multi-continuum Model for Multiscale Flow Problems
- arxiv url: http://arxiv.org/abs/2403.14084v1
- Date: Thu, 21 Mar 2024 02:30:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:36:52.322600
- Title: Learning-based Multi-continuum Model for Multiscale Flow Problems
- Title(参考訳): マルチスケールフロー問題に対する学習型マルチ連続モデル
- Authors: Fan Wang, Yating Wang, Wing Tat Leung, Zongben Xu,
- Abstract要約: 本稿では,同質化方程式の強化と,マルチスケール問題に対する単一モデルの精度向上を目的とした学習型マルチコンチニュウムモデルを提案する。
提案する学習型マルチコンチニュウムモデルでは,各粗いグリッドブロック内の複数の相互作用媒質を解決し,その間の物質移動を記述できる。
- 参考スコア(独自算出の注目度): 24.93423649301792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiscale problems can usually be approximated through numerical homogenization by an equation with some effective parameters that can capture the macroscopic behavior of the original system on the coarse grid to speed up the simulation. However, this approach usually assumes scale separation and that the heterogeneity of the solution can be approximated by the solution average in each coarse block. For complex multiscale problems, the computed single effective properties/continuum might be inadequate. In this paper, we propose a novel learning-based multi-continuum model to enrich the homogenized equation and improve the accuracy of the single continuum model for multiscale problems with some given data. Without loss of generalization, we consider a two-continuum case. The first flow equation keeps the information of the original homogenized equation with an additional interaction term. The second continuum is newly introduced, and the effective permeability in the second flow equation is determined by a neural network. The interaction term between the two continua aligns with that used in the Dual-porosity model but with a learnable coefficient determined by another neural network. The new model with neural network terms is then optimized using trusted data. We discuss both direct back-propagation and the adjoint method for the PDE-constraint optimization problem. Our proposed learning-based multi-continuum model can resolve multiple interacted media within each coarse grid block and describe the mass transfer among them, and it has been demonstrated to significantly improve the simulation results through numerical experiments involving both linear and nonlinear flow equations.
- Abstract(参考訳): マルチスケール問題は通常、シミュレーションを高速化するために粗いグリッド上の元のシステムのマクロな振る舞いを捉えることができるいくつかの効果的なパラメータを持つ方程式による数値的均質化によって近似することができる。
しかし、このアプローチは通常、スケール分離と解の不均一性をそれぞれの粗いブロックにおける解平均によって近似できると仮定する。
複雑なマルチスケール問題に対して、計算された単一の有効性/連続性は不十分かもしれない。
本稿では,同質化方程式の強化と,与えられたデータを用いたマルチスケール問題に対する単一連続体モデルの精度向上を目的とした,学習に基づく新しいマルチ連続体モデルを提案する。
一般化の欠如がなければ、2連続の場合を考える。
第1のフロー方程式は、元の均質化方程式の情報を追加の相互作用項で保持する。
第2連続体を新たに導入し、第2流れ方程式の有効透過性をニューラルネットワークにより決定する。
2つの連続体間の相互作用項は、双極性モデルで使用されるものと一致するが、別のニューラルネットワークによって決定される学習可能な係数と一致する。
ニューラルネットワーク用語を持つ新しいモデルは、信頼されたデータを使用して最適化される。
PDE制約最適化問題に対する直接バックプロパゲーションと随伴法の両方について論じる。
提案した学習型多大陸モデルでは, 粗いグリッドブロック内の複数の相互作用媒質を解き, 物質移動を記述し, 線形および非線形流方程式を含む数値実験によりシミュレーション結果を大幅に改善することが実証された。
関連論文リスト
- Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
本稿では,機械学習ライブラリのツールと手法を用いて,離散化した多相流方程式を解く。
はじめて、(訓練されていない)畳み込みニューラルネットワークに基づくアプローチを用いて、多相流の有限要素判別を解くことができる。
論文 参考訳(メタデータ) (2024-01-12T18:42:42Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。