論文の概要: HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression
- arxiv url: http://arxiv.org/abs/2403.14530v2
- Date: Wed, 3 Apr 2024 02:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 21:48:26.828335
- Title: HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression
- Title(参考訳): HAC:3次元ガウス切削圧縮のためのハッシュグリッド支援コンテキスト
- Authors: Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, Weiyao Lin,
- Abstract要約: 3D Gaussian Splatting (3DGS) は、新しいビュー合成のための有望なフレームワークとして登場した。
高速な3DGS表現のためのHash-grid Assisted Context (HAC) フレームワークを提案する。
私たちの研究は、コンテキストベースの3DGS表現の圧縮を探求するパイオニアです。
- 参考スコア(独自算出の注目度): 55.6351304553003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To address this, we make use of the relations between the unorganized anchors and the structured hash grid, leveraging their mutual information for context modeling, and propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation. Our approach introduces a binary hash grid to establish continuous spatial consistencies, allowing us to unveil the inherent spatial relations of anchors through a carefully designed context model. To facilitate entropy coding, we utilize Gaussian distributions to accurately estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Additionally, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Importantly, our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75\times$ compared to vanilla 3DGS, while simultaneously improving fidelity, and achieving over $11\times$ size reduction over SOTA 3DGS compression approach Scaffold-GS. Our code is available here: https://github.com/YihangChen-ee/HAC
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新しいビュー合成のための有望なフレームワークとして登場し、高速レンダリング速度と高忠実さを誇っている。
しかし、ガウスとその関連属性は効果的な圧縮技術を必要とする。
それでも、ガウシアン(あるいは論文のアンカー)の点雲のスパースで非組織的な性質は、圧縮の課題を提示している。
そこで我々は,非組織型アンカーと構造化ハッシュグリッドの関係を利用して,それらの相互情報をコンテキストモデリングに活用し,高度にコンパクトな3DGS表現のためのHash-grid Assisted Context(HAC)フレームワークを提案する。
提案手法では, 連続的な空間的整合性を確立するための2値ハッシュグリッドを導入し, 慎重に設計した文脈モデルを用いて, アンカーの空間的関係を明らかにする。
エントロピー符号化を容易にするために,我々はガウス分布を用いて各量子化属性の確率を正確に推定する。
さらに,無効なガウスとアンカーを除去するために,適応的なマスキング戦略を取り入れた。
重要なことは、我々の研究は3DGS表現の文脈ベースの圧縮を探求する先駆者であり、その結果、バニラ3DGSと比較して75ドル以上のコスト削減が達成され、同時に忠実度が向上し、SOTA3DGS圧縮アプローチであるScaffold-GSよりも11ドル以上のコスト削減が達成された。
私たちのコードはこちらで入手可能です。
関連論文リスト
- GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting [12.342660713851227]
3D Gaussian Splatting (3DGS) は、ガウス関数の連続的な集合を利用して、新しいビュー合成の主流として登場した。
3DGSは、ガウシアンの多さを記憶するためのかなりのメモリ要件に悩まされており、その実用性を妨げている。
コンパクトで高品質な3DGSのための最適化ベースの単純化フレームワークであるGaussianSpaを紹介する。
論文 参考訳(メタデータ) (2024-11-09T00:38:06Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) は、1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルである。
FCGSは圧縮比を20倍以上に向上し、高精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
論文 参考訳(メタデータ) (2024-10-10T15:13:08Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model [77.71796503321632]
我々は3DGS表現のアンカーレベルにコンテキストモデルを導入し,バニラ3DGSと比較して100倍以上のサイズの縮小を実現した。
我々の研究は3DGS表現のためのアンカーレベルのコンテキストモデルを開拓し、バニラ3DGSに比べて100倍以上、そして最新の最先端のScaffold-GSに比べて15倍の大幅なサイズ縮小を実現した。
論文 参考訳(メタデータ) (2024-05-31T09:23:39Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。