論文の概要: Image Classification with Rotation-Invariant Variational Quantum Circuits
- arxiv url: http://arxiv.org/abs/2403.15031v1
- Date: Fri, 22 Mar 2024 08:26:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:08:17.764341
- Title: Image Classification with Rotation-Invariant Variational Quantum Circuits
- Title(参考訳): 回転不変変分量子回路を用いた画像分類
- Authors: Paul San Sebastian, Mikel Cañizo, Román Orús,
- Abstract要約: 変分量子アルゴリズムは、ノイズ中間スケール量子(NISQ)デバイスの初期応用として注目されている。
変分法の主な問題の1つは、変分パラメータの最適化に現れるバレンプラトー現象にある。
量子モデルに帰納バイアスを加えることは、この問題を緩和する潜在的な解決策として提案され、Geometric Quantum Machine Learningと呼ばれる新しい分野が生まれた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices. One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters. Adding geometric inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning. In this work, an equivariant architecture for variational quantum classifiers is introduced to create a label-invariant model for image classification with $C_4$ rotational label symmetry. The equivariant circuit is benchmarked against two different architectures, and it is experimentally observed that the geometric approach boosts the model's performance. Finally, a classical equivariant convolution operation is proposed to extend the quantum model for the processing of larger images, employing the resources available in NISQ devices.
- Abstract(参考訳): 変分量子アルゴリズムは、ノイズ中間スケール量子(NISQ)デバイスの初期応用として注目されている。
変分法の主な問題の1つは、変分パラメータの最適化に現れるバレンプラトー現象にある。
量子モデルに幾何学的帰納バイアスを加えることは、この問題を緩和する潜在的な解決策として提案され、幾何学量子機械学習と呼ばれる新しい分野が生まれた。
本研究では、変分量子分類器の同変アーキテクチャを導入し、$C_4$回転ラベル対称性を持つ画像分類のためのラベル不変モデルを作成する。
同変回路は2つの異なるアーキテクチャに対してベンチマークされ、幾何学的アプローチがモデルの性能を高めることを実験的に観察した。
最後に、NISQデバイスで利用可能なリソースを用いて、より大きな画像の処理のための量子モデルを拡張するための古典的同変畳み込み演算を提案する。
関連論文リスト
- Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Variational post-selection for ground states and thermal states
simulation [1.9336815376402718]
変分量子アルゴリズム(VQA)は、ノイズの多い中間スケール量子(NISQ)時代の最も有望なルートの1つである。
本稿では,変分後選択手法を取り入れた変分量子アンサッツの表現性向上のための枠組みを提案する。
論文 参考訳(メタデータ) (2024-02-12T12:16:17Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
本研究では、平面$p4m$対称性に基づく画像分類のための同変量子畳み込みニューラルネットワーク(EquivQCNNs)を提案する。
2次元イジングモデルの位相検出や拡張MNISTデータセットの分類など、さまざまなユースケースでテストされた結果を示す。
論文 参考訳(メタデータ) (2023-10-03T18:01:02Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Exploiting symmetry in variational quantum machine learning [0.5541644538483947]
変分量子機械学習は、短期量子コンピュータの広範囲にわたる応用である。
我々は、標準ゲートセットが、目の前の問題の対称性を尊重する同変ゲートセットにどのように変換されるかを示す。
提案手法を,非自明な対称性を特徴とする2つの玩具問題に対してベンチマークし,一般化性能の大幅な向上を観察する。
論文 参考訳(メタデータ) (2022-05-12T17:01:41Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
量子カーネル法を用いて微分方程式(DE)の解法を提案する。
量子モデルをカーネル関数の重み付け和として構成し、特徴写像を用いて変数を符号化し、モデル微分を表現する。
論文 参考訳(メタデータ) (2022-03-16T18:56:35Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Benchmarking variational quantum eigensolvers for the
square-octagon-lattice Kitaev model [3.6810704401578724]
量子スピン系は、科学的な関心を持つ古典的な量子計算の第一の機会となるかもしれない。
変分量子固有解法(VQE)は、ノイズ量子コンピュータ上でエネルギー固有値を求めるための有望な手法である。
本稿では,リゲッティのAspen-9チップ上でのHVA回路の実装について述べる。
論文 参考訳(メタデータ) (2021-08-30T16:58:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。