論文の概要: Higher education assessment practice in the era of generative AI tools
- arxiv url: http://arxiv.org/abs/2404.01036v1
- Date: Mon, 1 Apr 2024 10:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:47:02.550639
- Title: Higher education assessment practice in the era of generative AI tools
- Title(参考訳): 生成型AIツール時代における高等教育評価の実践
- Authors: Bayode Ogunleye, Kudirat Ibilola Zakariyyah, Oluwaseun Ajao, Olakunle Olayinka, Hemlata Sharma,
- Abstract要約: 本研究は,データサイエンス,データ分析,建設管理の3つの指標を用いて実験を行った。
以上の結果から,GenAIツールが主観的知識,問題解決,分析的,批判的思考,プレゼンテーション能力を示すことが明らかとなった。
この結果から,AIツールをHEでの教育や学習に活用する方法を推奨した。
- 参考スコア(独自算出の注目度): 0.37282630026096586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The higher education (HE) sector benefits every nation's economy and society at large. However, their contributions are challenged by advanced technologies like generative artificial intelligence (GenAI) tools. In this paper, we provide a comprehensive assessment of GenAI tools towards assessment and pedagogic practice and, subsequently, discuss the potential impacts. This study experimented using three assessment instruments from data science, data analytics, and construction management disciplines. Our findings are two-fold: first, the findings revealed that GenAI tools exhibit subject knowledge, problem-solving, analytical, critical thinking, and presentation skills and thus can limit learning when used unethically. Secondly, the design of the assessment of certain disciplines revealed the limitations of the GenAI tools. Based on our findings, we made recommendations on how AI tools can be utilised for teaching and learning in HE.
- Abstract(参考訳): 高等教育(HE)部門はすべての国の経済と社会に大きな利益をもたらす。
しかし、それらの貢献は、生成人工知能(GenAI)ツールのような高度な技術によって挑戦されている。
本稿では,GenAIツールを総合的に評価し,その影響について考察する。
本研究は,データサイエンス,データ分析,建設管理の3つの指標を用いて実験を行った。
まず、GenAIツールが主観的知識、問題解決、分析的思考、批判的思考、プレゼンテーション能力を示し、非倫理的に使用した場合の学習を制限することを明らかにした。
第2に、特定の分野の評価設計により、GenAIツールの限界が明らかになった。
この結果から,AIツールをHEでの教育や学習に活用する方法を推奨した。
関連論文リスト
- Dimensions of Generative AI Evaluation Design [51.541816010127256]
我々は、GenAI評価設計に関わる重要な選択を捉えるための一般的な次元のセットを提案する。
これらの次元には、評価設定、タスクタイプ、入力ソース、インタラクションスタイル、期間、メトリックタイプ、スコアリング方法が含まれる。
論文 参考訳(メタデータ) (2024-11-19T18:25:30Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - Understanding Student and Academic Staff Perceptions of AI Use in Assessment and Feedback [0.0]
高等教育における人工知能(AI)と生成人工知能(GenAI)の台頭は、評価改革を必要としている。
本研究は,AIとGenAIツールを用いた学生と学術スタッフの経験を探索することによって,重要なギャップを解消する。
オンライン調査では、ベトナムの2つの大学とシンガポールの1つの大学から35人の研究スタッフと282人の学生のデータを収集した。
論文 参考訳(メタデータ) (2024-06-22T10:25:01Z) - Crafting Tomorrow's Evaluations: Assessment Design Strategies in the Era of Generative AI [0.02638878351659022]
GenAIは教育に大きな影響を与え、評価設計と評価方法論を著しく破壊してきた。
主に、学術的完全性、信頼性、アクセスの公平性、評価評価方法論、フィードバックを中心に、いくつかの懸念がある。
本稿では、評価設計と評価に対処する必要がある課題と機会について論じる。
論文 参考訳(メタデータ) (2024-05-03T01:28:21Z) - The AI Assessment Scale (AIAS) in action: A pilot implementation of GenAI supported assessment [0.0]
高等教育におけるジェネレーティブ・人工知能(GenAI)技術の急速な採用は、学術的完全性、評価の実践、学生の学習に関する懸念を引き起こしている。
本稿では,イギリス大学ベトナム校(BUV)でAIAS(Artificial Intelligence Assessment Scale)の実施を探求するパイロット研究の成果を報告する。
AIASは「No AI」から「Full AI」までの5つのレベルから構成されており、教育者は人間の入力と批判的思考を必要とする領域に焦点を当てたアセスメントを設計できる。
論文 参考訳(メタデータ) (2024-03-15T08:00:02Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
我々は,GenAIツールを教育評価に統合するための,実用的でシンプルで十分に包括的なツールの概要を述べる。
AIアセスメント尺度(AIAS)は、教育者に対して、評価におけるGenAI使用の適切なレベルを選択する権限を与える。
実践的で柔軟なアプローチを採用することで、AIASは、教育におけるGenAIに関する現在の不確実性と不安に対処するための、非常に必要な出発点を形成することができる。
論文 参考訳(メタデータ) (2023-12-12T09:08:36Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
我々は、中核的なプログラミングコースでGenAIを効果的に活用するために、学生を指導するフレームワーク「AI-Lab」を紹介した。
GenAIの誤りを特定し、修正することで、学生は学習プロセスを充実させる。
教育者にとって、AI-Labは、学習経験におけるGenAIの役割に対する学生の認識を探索するメカニズムを提供する。
論文 参考訳(メタデータ) (2023-08-23T17:20:37Z) - Tool Learning with Foundation Models [158.8640687353623]
基礎モデルの出現により、AIシステムは、人間としてのツールの使用に等しく適応できる可能性がある。
その大きな可能性にもかかわらず、この分野における重要な課題、機会、そして将来の取り組みに関する包括的な理解はいまだに欠けている。
論文 参考訳(メタデータ) (2023-04-17T15:16:10Z) - AI Explainability 360: Impact and Design [120.95633114160688]
2019年、私たちはAI Explainability 360(Arya et al. 2020)を開発しました。
本稿では,いくつかのケーススタディ,統計,コミュニティフィードバックを用いて,ツールキットが与える影響について検討する。
また,ツールキットのフレキシブルな設計,使用例,利用者が利用可能な教育資料や資料についても述べる。
論文 参考訳(メタデータ) (2021-09-24T19:17:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。