論文の概要: Understanding Student and Academic Staff Perceptions of AI Use in Assessment and Feedback
- arxiv url: http://arxiv.org/abs/2406.15808v1
- Date: Sat, 22 Jun 2024 10:25:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:25:27.807190
- Title: Understanding Student and Academic Staff Perceptions of AI Use in Assessment and Feedback
- Title(参考訳): 評価とフィードバックにおけるAI活用の学生とアカデミックスタッフの理解
- Authors: Jasper Roe, Mike Perkins, Daniel Ruelle,
- Abstract要約: 高等教育における人工知能(AI)と生成人工知能(GenAI)の台頭は、評価改革を必要としている。
本研究は,AIとGenAIツールを用いた学生と学術スタッフの経験を探索することによって,重要なギャップを解消する。
オンライン調査では、ベトナムの2つの大学とシンガポールの1つの大学から35人の研究スタッフと282人の学生のデータを収集した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rise of Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) in higher education necessitates assessment reform. This study addresses a critical gap by exploring student and academic staff experiences with AI and GenAI tools, focusing on their familiarity and comfort with current and potential future applications in learning and assessment. An online survey collected data from 35 academic staff and 282 students across two universities in Vietnam and one in Singapore, examining GenAI familiarity, perceptions of its use in assessment marking and feedback, knowledge checking and participation, and experiences of GenAI text detection. Descriptive statistics and reflexive thematic analysis revealed a generally low familiarity with GenAI among both groups. GenAI feedback was viewed negatively; however, it was viewed more positively when combined with instructor feedback. Academic staff were more accepting of GenAI text detection tools and grade adjustments based on detection results compared to students. Qualitative analysis identified three themes: unclear understanding of text detection tools, variability in experiences with GenAI detectors, and mixed feelings about GenAI's future impact on educational assessment. These findings have major implications regarding the development of policies and practices for GenAI-enabled assessment and feedback in higher education.
- Abstract(参考訳): 高等教育における人工知能(AI)と生成人工知能(GenAI)の台頭は、評価改革を必要としている。
この研究は、AIとGenAIツールを用いた学生や学術スタッフの経験を探求し、学習と評価における現在の潜在的な応用に対する親しみと快適さに焦点を当てることで、重要なギャップに対処する。
オンライン調査では、ベトナムの2つの大学とシンガポールの2つの大学にまたがる35人の研究スタッフと282人の学生のデータを収集し、GenAI習熟度、評価マーキングとフィードバックにおけるその使用感、知識チェックと参加、GenAIテキスト検出の経験を調べた。
記述的統計値と反射的主題分析の結果,両群ともGenAIとの親和性は概して低かった。
GenAIのフィードバックは否定的な評価を受けたが、インストラクターのフィードバックと組み合わせると、より肯定的な評価が得られた。
研究員は, 学生と比較して, GenAIテキスト検出ツールの受入れや, 検出結果に基づく等級調整が多かった。
質的分析では、テキスト検出ツールの不明な理解、GenAI検出器の経験の多様性、教育評価におけるGenAIの将来的な影響に関する混合感情の3つのテーマを特定した。
これらの知見は、高等教育におけるGenAI対応評価とフィードバックのための政策と実践の発達に大きな影響を及ぼす。
関連論文リスト
- Dimensions of Generative AI Evaluation Design [51.541816010127256]
我々は、GenAI評価設計に関わる重要な選択を捉えるための一般的な次元のセットを提案する。
これらの次元には、評価設定、タスクタイプ、入力ソース、インタラクションスタイル、期間、メトリックタイプ、スコアリング方法が含まれる。
論文 参考訳(メタデータ) (2024-11-19T18:25:30Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
コンピュータ学生のGenAI利用と認識に関する先行研究は限られている。
私たちは、小さなエンジニアリングに焦点を当てたR1大学で、すべてのコンピュータサイエンス専攻を調査しました。
我々は,GenAIと教育に関する新たな議論に対する知見の影響について論じる。
論文 参考訳(メタデータ) (2024-11-17T20:17:47Z) - Generative AI and Agency in Education: A Critical Scoping Review and Thematic Analysis [0.0]
本稿では,ジェネレーティブAI(GenAI)と教育機関の関係を概観し,批判的デジタル教育のレンズを通して利用可能な文献を分析した。
我々は,デジタル空間における制御,可変エンゲージメントとアクセシビリティ,代理店の表記変更という3つの重要なテーマを,AIが支援するハイブリッドセマンティック分析によって明らかにした。
この結果から,GenAIは個人化や支援を通じて学習機関を強化できるが,教育の不平等が悪化し,学習者の自律性が低下する危険性も示唆された。
論文 参考訳(メタデータ) (2024-11-01T14:40:31Z) - A Meta-analysis of College Students' Intention to Use Generative Artificial Intelligence [5.13644976086965]
本研究では,27の実証的研究のメタ分析を行った。
主な変数は、GenAIを使用する学生の行動意図と強く相関している。
ジェンダーは、特に、学生のGenAIの使用に対する行動意図に対する態度を緩やかにしていただけである。
論文 参考訳(メタデータ) (2024-08-25T15:46:57Z) - Higher education assessment practice in the era of generative AI tools [0.37282630026096586]
本研究は,データサイエンス,データ分析,建設管理の3つの指標を用いて実験を行った。
以上の結果から,GenAIツールが主観的知識,問題解決,分析的,批判的思考,プレゼンテーション能力を示すことが明らかとなった。
この結果から,AIツールをHEでの教育や学習に活用する方法を推奨した。
論文 参考訳(メタデータ) (2024-04-01T10:43:50Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Zの学生は一般的に、生成AI(GenAI)の潜在的なメリットについて楽観的だった
Gen XとGen Yの教師は、過度な信頼、倫理的、教育的な意味に関する懸念を高めた。
論文 参考訳(メタデータ) (2023-05-04T14:42:06Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - AI Explainability 360: Impact and Design [120.95633114160688]
2019年、私たちはAI Explainability 360(Arya et al. 2020)を開発しました。
本稿では,いくつかのケーススタディ,統計,コミュニティフィードバックを用いて,ツールキットが与える影響について検討する。
また,ツールキットのフレキシブルな設計,使用例,利用者が利用可能な教育資料や資料についても述べる。
論文 参考訳(メタデータ) (2021-09-24T19:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。