論文の概要: AI-Tutoring in Software Engineering Education
- arxiv url: http://arxiv.org/abs/2404.02548v1
- Date: Wed, 3 Apr 2024 08:15:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:10:13.041129
- Title: AI-Tutoring in Software Engineering Education
- Title(参考訳): ソフトウェア工学教育におけるAIチューニング
- Authors: Eduard Frankford, Clemens Sauerwein, Patrick Bassner, Stephan Krusche, Ruth Breu,
- Abstract要約: 我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
- 参考スコア(独自算出の注目度): 0.7631288333466648
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid advancement of artificial intelligence (AI) in various domains, the education sector is set for transformation. The potential of AI-driven tools in enhancing the learning experience, especially in programming, is immense. However, the scientific evaluation of Large Language Models (LLMs) used in Automated Programming Assessment Systems (APASs) as an AI-Tutor remains largely unexplored. Therefore, there is a need to understand how students interact with such AI-Tutors and to analyze their experiences. In this paper, we conducted an exploratory case study by integrating the GPT-3.5-Turbo model as an AI-Tutor within the APAS Artemis. Through a combination of empirical data collection and an exploratory survey, we identified different user types based on their interaction patterns with the AI-Tutor. Additionally, the findings highlight advantages, such as timely feedback and scalability. However, challenges like generic responses and students' concerns about a learning progress inhibition when using the AI-Tutor were also evident. This research adds to the discourse on AI's role in education.
- Abstract(参考訳): 様々な領域における人工知能(AI)の急速な進歩により、教育部門は変革をめざすことになる。
学習体験、特にプログラミングにおけるAI駆動ツールの可能性は非常に大きい。
しかし、AI-Tutorとして自動プログラミングアセスメントシステム(APAS)で使用されるLarge Language Models(LLMs)の科学的評価はほとんど未定である。
したがって、学生がそのようなAI-Tutorとどのように相互作用するかを理解し、その経験を分析する必要がある。
本稿では,GAT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことにより,探索的ケーススタディを行った。
実験データ収集と探索調査を組み合わせることで,AI-Tutorとのインタラクションパターンに基づいて,さまざまなユーザタイプを特定した。
さらにこの発見は、タイムリーなフィードバックやスケーラビリティといったメリットも強調している。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
この研究は、AIの教育における役割について論じるものである。
関連論文リスト
- Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
論文 参考訳(メタデータ) (2024-10-14T16:01:01Z) - Towards Integrating Emerging AI Applications in SE Education [4.956066467858058]
本稿では,AI分野における現在のトレンドの体系的分析の予備的結果を示す。
我々は、AIアプリケーションとさらなる研究分野の一連の機会について論じる。
論文 参考訳(メタデータ) (2024-05-28T11:21:45Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
本研究は,AI言語モデルに対する教員の経験と態度について考察する。
学習スタイルと生成AIに対する態度の相関は見つからない。
CS教育者は、生成するAIツールの技術的理解にはるかに自信を持っているが、AI生成された仕事を検出する能力にこれ以上自信がない。
論文 参考訳(メタデータ) (2024-03-22T19:21:29Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
本稿では,Large Language Models(LLM)の教育における転換的役割とその学習ツールとしての可能性について考察する。
AI-tutor、AI-coach、AI-mentor、AI-teammate、AI-tool、AI-simulator、AI-studentの7つのアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-13T03:36:36Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
本研究は,AIと盗作を包含する学問的不正行為の創発的形態である,AI-giarismに対する学生の認識を探求する。
この発見は、AIコンテンツ生成に対する明確な不承認を伴う、複雑な理解の風景を描いている。
この研究は、学術、政策立案、そして教育におけるAI技術のより広範な統合に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-06-06T02:22:08Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。