論文の概要: Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs
- arxiv url: http://arxiv.org/abs/2404.02819v4
- Date: Tue, 21 Jan 2025 18:20:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:26.191298
- Title: Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs
- Title(参考訳): 空間時間精度トレードオフをもつ非単元及び単元対角演算子の効率的な量子回路
- Authors: Julien Zylberman, Ugo Nzongani, Andrea Simonetto, Fabrice Debbasch,
- Abstract要約: ユニタリおよび非ユニタリ対角作用素は量子アルゴリズムの基本的な構成要素である。
本稿では,一元対角演算子と非単元対角演算子を効率よく調整可能な量子回路で実装する一般手法を提案する。
- 参考スコア(独自算出の注目度): 1.0749601922718608
- License:
- Abstract: Unitary and non-unitary diagonal operators are fundamental building blocks in quantum algorithms with applications in the resolution of partial differential equations, Hamiltonian simulations, the loading of classical data on quantum computers (quantum state preparation) and many others. In this paper, we introduce a general approach to implement unitary and non-unitary diagonal operators with efficient-adjustable-depth quantum circuits. The depth, i.e., the number of layers of quantum gates of the quantum circuit, is reducible with respect either to the width, i.e, the number of ancilla qubits, or to the accuracy between the implemented operator and the target one. While exact methods have an optimal exponential scaling either in terms of size, i.e., the total number of primitive quantum gates, or width, approximate methods prove to be efficient for the class of diagonal operators depending on smooth, at least differentiable, functions. Our approach is general enough to allow any method for diagonal operators to become adjustable-depth or approximate, decreasing the depth of the circuit by increasing its width or its approximation level. This feature offers flexibility and can match with the hardware limitations in coherence time or cumulative gate error. We illustrate these methods by performing quantum state preparation and non-unitary-real-space simulation of the diffusion equation. This simulation paves the way to efficient implementations of stochastic models useful in physics, chemistry, biology, image processing and finance.
- Abstract(参考訳): ユニタリおよび非ユニタリ対角作用素は、偏微分方程式の解法、ハミルトニアンシミュレーション、量子コンピュータへの古典的データのロード(量子状態の準備)など、量子アルゴリズムの基本的な構成要素である。
本稿では,一元対角演算子と非単元対角演算子を効率よく調整可能な量子回路で実装する一般手法を提案する。
深さ、すなわち量子回路の量子ゲートの層数は、幅、すなわち、アンシラ量子ビットの個数、あるいは実装された演算子と対象の量子ゲートの間の精度に関して再現可能である。
正確なメソッドは、サイズ、すなわちプリミティブ量子ゲートの総数、幅のいずれにおいても最適な指数スケーリングを持つが、近似的手法は、滑らかで少なくとも微分可能な関数に依存する対角作用素のクラスに対して効率的であることが証明される。
我々のアプローチは一般に、対角作用素が調整可能な深度あるいは近似値になるようにし、その幅や近似レベルを増大させることで回路の深さを減少させるのに十分である。
この機能は柔軟性を提供し、コヒーレンス時間や累積ゲートエラーのハードウェア制限にマッチする。
量子状態の準備と拡散方程式の非単位空間シミュレーションを行うことにより,これらの手法を説明する。
このシミュレーションは、物理学、化学、生物学、画像処理、ファイナンスに有用な確率モデルの効率的な実装への道を開く。
関連論文リスト
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
論文 参考訳(メタデータ) (2024-08-22T17:48:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
本稿では偏微分方程式によって記述された初期境界値問題を解くための変分量子アルゴリズムを提案する。
このアプローチでは、現在のノイズの多い中間スケール量子時代の量子コンピュータに適した古典的/量子的ハードウェアを使用する。
論文 参考訳(メタデータ) (2024-02-28T18:19:33Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Approximate encoding of quantum states using shallow circuits [0.0]
量子シミュレーションとアルゴリズムの一般的な要件は、2量子ゲートのシーケンスを通して複雑な状態を作成することである。
ここでは、限られた数のゲートを用いて、ターゲット状態の近似符号化を作成することを目的とする。
我々の研究は、局所ゲートを用いて目標状態を作成する普遍的な方法を提供し、既知の戦略よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2022-06-30T18:00:04Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
連鎖上の量子ビットの同時結合を利用し、非局所パリティ依存量子演算のセットを設計する。
結果として得られる有効長距離結合は、ヨルダン・ウィグナーフェルミオンのパラメトリザブル・トロッターステップを直接実装する。
超伝導量子回路アーキテクチャにおけるゲート動作の数値シミュレーションを行う。
論文 参考訳(メタデータ) (2022-03-14T17:33:40Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
本研究は,同種LDEを解くための効率的な量子アルゴリズムを構築するために,量子振幅減衰演算を資源として利用する新しい手法を提案する。
このようなオープンな量子系にインスパイアされた回路は、非干渉法で解の実際の指数項を構成することができることを示す。
論文 参考訳(メタデータ) (2021-11-10T11:25:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Programming a quantum computer with quantum instructions [39.994876450026865]
我々は密度行列化プロトコルを用いて量子データ上で量子命令を実行する。
古典的に定義されたゲートの固定列は、補助量子命令状態に一意に依存する演算を実行する。
量子命令の利用により、コストのかかるトモグラフィー状態の再構築と再コンパイルの必要性がなくなる。
論文 参考訳(メタデータ) (2020-01-23T22:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。