論文の概要: Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling
- arxiv url: http://arxiv.org/abs/2411.10483v1
- Date: Wed, 13 Nov 2024 19:08:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 17:53:03.878687
- Title: Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling
- Title(参考訳): 電気回路解析のための物理インフォームニューラルネットワーク:誘電体モデルへの応用
- Authors: Reyhaneh Taj,
- Abstract要約: 物理情報ニューラルネットワーク(PINN)は、物理法則を直接学習プロセスに組み込むことによって、有望なアプローチを提供する。
本稿では、PINNの実装に特化して設計されたDeepXDEフレームワークの機能と制限について説明する。
電流(ln(I))に対数変換を適用することにより,PINN予測の安定性と精度が著しく向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Scientific machine learning (SciML) represents a significant advancement in integrating machine learning (ML) with scientific methodologies. At the forefront of this development are Physics-Informed Neural Networks (PINNs), which offer a promising approach by incorporating physical laws directly into the learning process, thereby reducing the need for extensive datasets. However, when data is limited or the system becomes more complex, PINNs can face challenges, such as instability and difficulty in accurately fitting the training data. In this article, we explore the capabilities and limitations of the DeepXDE framework, a tool specifically designed for implementing PINNs, in addressing both forward and inverse problems related to dielectric properties. Using RC circuit models to represent dielectric materials in HVDC systems, we demonstrate the effectiveness of PINNs in analyzing and improving system performance. Additionally, we show that applying a logarithmic transformation to the current (ln(I)) significantly enhances the stability and accuracy of PINN predictions, especially in challenging scenarios with sparse data or complex models. In inverse mode, however, we faced challenges in estimating key system parameters, such as resistance and capacitance, in more complex scenarios with longer time domains. This highlights the potential for future work in improving PINNs through transformations or other methods to enhance performance in inverse problems. This article provides pedagogical insights for those looking to use PINNs in both forward and inverse modes, particularly within the DeepXDE framework.
- Abstract(参考訳): 科学機械学習(SciML)は、機械学習(ML)と科学的方法論を統合する上で重要な進歩である。
この開発の最前線は物理情報ニューラルネットワーク(PINN)で、物理法則を直接学習プロセスに組み込むことで、広範なデータセットの必要性を減らし、有望なアプローチを提供する。
しかし、データが制限されたりシステムが複雑になったりすると、PINNは不安定性やトレーニングデータの正確な適合が難しいといった問題に直面します。
本稿では,PINNの実装に特化して設計されたDeepXDEフレームワークの機能と限界について検討する。
HVDCシステムにおける誘電体材料を表現するためのRC回路モデルを用いて,システム性能の解析・改善におけるPINNの有効性を実証する。
さらに, 対数変換を電流(ln(I))に適用することにより, PINN予測の安定性と精度が著しく向上することを示す。
しかし、逆モードでは、より長い時間領域を持つより複雑なシナリオにおいて、抵抗やキャパシタンスといった重要なシステムパラメータを推定する際の課題に直面した。
このことは、変換やその他の方法でPINNを改善し、逆問題のパフォーマンスを向上させるという今後の取り組みの可能性を浮き彫りにする。
この記事では、特にDeepXDEフレームワーク内で、フォワードモードとリバースモードの両方でPINNを使用したいと考えている人々に対して、教育的な洞察を提供する。
関連論文リスト
- Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-回避-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動ダイナミクスの複雑さに対処する。
論文 参考訳(メタデータ) (2024-09-01T08:00:31Z) - A Two-Stage Imaging Framework Combining CNN and Physics-Informed Neural Networks for Full-Inverse Tomography: A Case Study in Electrical Impedance Tomography (EIT) [5.772638266457322]
畳み込みニューラルネットワーク(CNN)と物理情報ニューラルネットワーク(PINN)を組み合わせた2段階ハイブリッド学習フレームワークを提案する。
このフレームワークは、データ駆動とモデル駆動のアプローチを統合し、教師付き学習と教師なし学習を組み合わせて、EITのPINNフレームワーク内の前方および逆問題を分離する。
論文 参考訳(メタデータ) (2024-07-25T02:48:22Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に捉えることを学ぶ。
論文 参考訳(メタデータ) (2024-04-04T06:56:32Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。