An Automated Machine Learning Approach to Inkjet Printed Component Analysis: A Step Toward Smart Additive Manufacturing
- URL: http://arxiv.org/abs/2404.04623v1
- Date: Sat, 6 Apr 2024 13:13:45 GMT
- Title: An Automated Machine Learning Approach to Inkjet Printed Component Analysis: A Step Toward Smart Additive Manufacturing
- Authors: Abhishek Sahu, Peter H. Aaen, Praveen Damacharla,
- Abstract summary: We present a machine learning based architecture for microwave characterization of inkjet printed components on flexible substrates.
It is shown that eXtreme Gradient Boosted Trees Regressor (XGB) and Light Gradient Boosting (LGB) algorithms perform best for the characterization problem under study.
- Score: 0.058520770038704165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a machine learning based architecture for microwave characterization of inkjet printed components on flexible substrates. Our proposed architecture uses several machine learning algorithms and automatically selects the best algorithm to extract the material parameters (ink conductivity and dielectric properties) from on-wafer measurements. Initially, the mutual dependence between material parameters of the inkjet printed coplanar waveguides (CPWs) and EM-simulated propagation constants is utilized to train the machine learning models. Next, these machine learning models along with measured propagation constants are used to extract the ink conductivity and dielectric properties of the test prototypes. To demonstrate the applicability of our proposed approach, we compare and contrast four heuristic based machine learning models. It is shown that eXtreme Gradient Boosted Trees Regressor (XGB) and Light Gradient Boosting (LGB) algorithms perform best for the characterization problem under study.
Related papers
- SciQu: Accelerating Materials Properties Prediction with Automated Literature Mining for Self-Driving Laboratories [0.7673339435080445]
Assessing different material properties to predict specific attributes is a fundamental requirement for materials science-based applications.
Our study addresses these challenges by leveraging machine learning to analyze material properties with greater precision and efficiency.
By automating the data extraction process and using the extracted information to train machine learning models, our developed model, SciQu, optimize material properties.
arXiv Detail & Related papers (2024-07-11T08:12:46Z) - Estimation of Electronic Band Gap Energy From Material Properties Using
Machine Learning [0.0]
We present a machine learning-driven model capable of swiftly predicting material band gap energy.
Our model does not require any preliminary DFT-based calculation or knowledge of the structure of the material.
A new evaluation scheme for comparing the performance of ML-based models in material sciences is introduced.
arXiv Detail & Related papers (2024-03-08T07:32:28Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Deep Learning Framework for the Design of Orbital Angular Momentum
Generators Enabled by Leaky-wave Holograms [0.6999740786886535]
We present a novel approach for the design of leaky-wave holographic antennas that generates OAM-carrying electromagnetic waves by combining Flat Optics (FO) and machine learning (ML) techniques.
To improve the performance of our system, we use a machine learning technique to discover a mathematical function that can effectively control the entire radiation pattern.
We can determine the optimal values for each parameter, resulting in the desired radiation pattern, using a total of 77,000 generated datasets.
arXiv Detail & Related papers (2023-04-25T10:01:04Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods.
The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors.
arXiv Detail & Related papers (2022-12-07T10:01:11Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Machine Learning-Assisted E-jet Printing of Organic Flexible Biosensors [8.607141556994513]
The electrical conductivity of the e-jet printed circuits was studied as a function of key printing parameters.
The collected experimental dataset was then used to train a machine learning algorithm.
The highest accuracy of AdaBoost ensemble learning has resulted in the range of 10-15 trees.
arXiv Detail & Related papers (2021-11-07T01:57:38Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.