論文の概要: AI for DevSecOps: A Landscape and Future Opportunities
- arxiv url: http://arxiv.org/abs/2404.04839v1
- Date: Sun, 7 Apr 2024 07:24:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:20:53.194043
- Title: AI for DevSecOps: A Landscape and Future Opportunities
- Title(参考訳): DevSecOpsのためのAI: ランドスケープと将来の可能性
- Authors: Michael Fu, Jirat Pasuksmit, Chakkrit Tantithamthavorn,
- Abstract要約: 2017年から2023年までの99の論文を分析した。
DevOpsプロセスに関連する12のタスクを特定し、既存のAI駆動のセキュリティアプローチをレビューしました。
既存のAI駆動セキュリティアプローチで遭遇した15の課題を発見した。
- 参考スコア(独自算出の注目度): 6.513361705307775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DevOps has emerged as one of the most rapidly evolving software development paradigms. With the growing concerns surrounding security in software systems, the DevSecOps paradigm has gained prominence, urging practitioners to incorporate security practices seamlessly into the DevOps workflow. However, integrating security into the DevOps workflow can impact agility and impede delivery speed. Recently, the advancement of artificial intelligence (AI) has revolutionized automation in various software domains, including software security. AI-driven security approaches, particularly those leveraging machine learning or deep learning, hold promise in automating security workflows. They reduce manual efforts, which can be integrated into DevOps to ensure uninterrupted delivery speed and align with the DevSecOps paradigm simultaneously. This paper seeks to contribute to the critical intersection of AI and DevSecOps by presenting a comprehensive landscape of AI-driven security techniques applicable to DevOps and identifying avenues for enhancing security, trust, and efficiency in software development processes. We analyzed 99 research papers spanning from 2017 to 2023. Specifically, we address two key research questions (RQs). In RQ1, we identified 12 security tasks associated with the DevOps process and reviewed existing AI-driven security approaches. In RQ2, we discovered 15 challenges encountered by existing AI-driven security approaches and derived future research opportunities. Drawing insights from our findings, we discussed the state-of-the-art AI-driven security approaches, highlighted challenges in existing research, and proposed avenues for future opportunities.
- Abstract(参考訳): DevOpsは、最も急速に進化するソフトウェア開発パラダイムの1つです。
ソフトウェアシステムのセキュリティに関する懸念が高まっている中、DevSecOpsパラダイムが注目され、実践者がDevOpsワークフローにセキュリティプラクティスをシームレスに組み込むように促された。
しかしながら、セキュリティをDevOpsワークフローに統合することは、アジリティに影響を与え、デリバリ速度を阻害する可能性がある。
近年、人工知能(AI)の進歩は、ソフトウェアセキュリティを含む様々なソフトウェア領域における自動化に革命をもたらした。
AI駆動のセキュリティアプローチ、特に機械学習やディープラーニングを活用するものは、セキュリティワークフローの自動化を約束する。
これにより手作業の労力を減らし、DevOpsに統合して、未中断のデリバリ速度を確保し、DevSecOpsパラダイムを同時に整合させることが可能になる。
本稿では、DevOpsに適用可能なAI駆動型セキュリティ技術の総合的な展望を示し、ソフトウェア開発プロセスにおけるセキュリティ、信頼性、効率性を高めるための道筋を特定することによって、AIとDevSecOpsのクリティカルな交差に寄与することを目的とする。
2017年から2023年までの99の論文を分析した。
具体的には2つの重要な研究課題(RQ)に対処する。
RQ1では、DevOpsプロセスに関連する12のセキュリティタスクを特定し、既存のAI駆動型セキュリティアプローチをレビューしました。
RQ2では、既存のAI駆動型セキュリティアプローチが直面する15の課題と、今後の研究機会の導出を発見しました。
我々の発見から洞察を得た上で、私たちは最先端のAI駆動型セキュリティアプローチについて議論し、既存の研究における課題を強調し、将来の機会への道を提案しました。
関連論文リスト
- "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - Continuous risk assessment in secure DevOps [0.24475591916185502]
私たちは、組織内のリスク関連アクティビティとの関わりから、セキュアなDevOpsが利益を得られるかについて論じています。
我々は、リスクアセスメント(RA)、特に脅威モデリング(TM)を組み合わせることに集中し、ソフトウェアライフサイクルの早期にセキュリティ上の配慮を適用します。
論文 参考訳(メタデータ) (2024-09-05T10:42:27Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
人工知能(AI)エージェント(英: Artificial Intelligence, AI)は、自律的にタスクを実行したり、事前に定義された目的やデータ入力に基づいて決定を行うソフトウェアエンティティである。
この調査は、AIエージェントが直面している新たなセキュリティ脅威を掘り下げ、これらを4つの重要な知識ギャップに分類する。
これらの脅威を体系的にレビューすることにより、この論文はAIエージェントの保護における進歩と既存の制限の両方を強調している。
論文 参考訳(メタデータ) (2024-06-04T01:22:31Z) - Welcome Your New AI Teammate: On Safety Analysis by Leashing Large Language Models [0.6699222582814232]
「ハザード分析・リスクアセスメント」は、安全要件仕様の策定に欠かせないステップである。
本稿では,Large Language Models (LLMs) を用いた HARA の高度自動化を支援するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-14T16:56:52Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - TanksWorld: A Multi-Agent Environment for AI Safety Research [5.218815947097599]
複雑なタスクを実行できる人工知能を作成する能力は、AI対応システムの安全かつ確実な運用を保証する能力を急速に上回っている。
AIの安全性リスクを示す最近のシミュレーション環境は、特定の問題に比較的単純または狭く焦点を絞っている。
我々は,3つの重要な側面を持つAI安全研究環境として,AI安全タンクワールドを紹介した。
論文 参考訳(メタデータ) (2020-02-25T21:00:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。