論文の概要: Optimal Universal Quantum Encoding for Statistical Inference
- arxiv url: http://arxiv.org/abs/2404.08172v1
- Date: Fri, 12 Apr 2024 00:39:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:15:01.668104
- Title: Optimal Universal Quantum Encoding for Statistical Inference
- Title(参考訳): 統計的推論のための最適ユニバーサル量子符号化
- Authors: Farhad Farokhi,
- Abstract要約: 幅広い統計的推論タスクに最適なユニバーサルエンコーダを求める。
最適な普遍符号化戦略を反復的に計算する方法を示す。
- 参考スコア(独自算出の注目度): 9.244521717083696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal encoding of classical data for statistical inference using quantum computing is investigated. A universal encoder is sought that is optimal for a wide array of statistical inference tasks. Accuracy of any statistical inference is shown to be upper bounded by a term that is proportional to maximal quantum leakage from the classical data, i.e., the input to the inference model, through its quantum encoding. This demonstrates that the maximal quantum leakage is a universal measure of the quality of the encoding strategy for statistical inference as it only depends on the quantum encoding of the data and not the inference task itself. The optimal universal encoding strategy, i.e., the encoding strategy that maximizes the maximal quantum leakage, is proved to be attained by pure states. When there are enough qubits, basis encoding is proved to be universally optimal. An iterative method for numerically computing the optimal universal encoding strategy is presented.
- Abstract(参考訳): 量子コンピューティングを用いた統計的推論のための古典データの最適符号化について検討した。
幅広い統計的推論タスクに最適なユニバーサルエンコーダを求める。
統計的推論の正確性は、古典的なデータ、すなわち推論モデルへの入力の量子符号化による最大量子リークに比例する用語によって上界であることが示されている。
このことは、最大量子リークは、推論タスク自体ではなくデータの量子符号化にのみ依存するため、統計的推論のための符号化戦略の品質の普遍的な尺度であることを示している。
最適普遍符号化戦略、すなわち最大量子リークを最大化する符号化戦略は、純粋な状態によって達成されることが証明される。
十分な量子ビットが存在する場合、基底符号化は普遍的に最適であることが証明される。
最適な普遍符号化戦略を数値計算する反復的手法を提案する。
関連論文リスト
- Quantum superposing algorithm for quantum encoding [5.484168968324708]
本稿では,その有効性と優れた計算性能を実証する,効率的な量子スーパーポーシングアルゴリズムを提案する。
特に、我々のアルゴリズムは最大2n-3制御ノット数(CNOT)を持ち、これまでで最も最適化された結果を示している。
論文 参考訳(メタデータ) (2024-09-29T00:49:21Z) - Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Recursive Quantum Relaxation for Combinatorial Optimization Problems [3.3053321430025258]
既存の量子最適化手法のいくつかは、最適量子状態から最も高い確率で測定される二項解を求める解法に統一可能であることを示す。
テンソルネットワーク技術を用いたMAX-CUT問題における数百ノードの標準ベンチマークグラフの実験は、RQRAOがゴーマン-ウィリアムソン法より優れ、最先端の古典的解法に匹敵することを示した。
論文 参考訳(メタデータ) (2024-03-04T13:48:21Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
我々は、量子回路の最適化にグラフニューラルネットワーク(GNN)オートエンコーダの使い方を初めて提示する。
我々は、量子回路から有向非巡回グラフを構築し、そのグラフを符号化し、その符号化を用いてRL状態を表現する。
我々の手法は、非常に大規模なRL量子回路最適化に向けた最初の現実的な第一歩である。
論文 参考訳(メタデータ) (2023-03-06T16:51:30Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Concentration of Data Encoding in Parameterized Quantum Circuits [7.534037755267707]
変分量子アルゴリズムは、有意義なタスクにおいて、短期的な量子アドバンテージを実現するための主要な戦略として認識されている。
本稿では、パラメータ化量子回路に基づく共通データ符号化戦略を考察し、進展する。
妥当な仮定の下では、平均符号化状態と最大混合状態の間の距離が明らかに上界であることが証明できる。
論文 参考訳(メタデータ) (2022-06-16T16:09:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
任意の量子状態を最適量子回路に符号化する量子古典ハイブリッドアルゴリズムを提案する。
提案アルゴリズムは、目的関数として、F = langle 0 vert hatmathcalCdagger vert Psi rangle$ の絶対値を用いる。
我々は、AQCEアルゴリズムによって生成された量子回路が、実際にノイズの多い実量子デバイス上で元の量子状態を合理的に表現できることを実験的に実証した。
論文 参考訳(メタデータ) (2021-12-29T12:33:41Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。