論文の概要: Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach
- arxiv url: http://arxiv.org/abs/2404.12315v1
- Date: Thu, 18 Apr 2024 16:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:02:22.860433
- Title: Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach
- Title(参考訳): 随伴解を持たないカオス流れの随伴感性:データ駆動的アプローチ
- Authors: Defne E. Ozan, Luca Magri,
- Abstract要約: 随伴感度分析は、すべてのシステムのパラメータに関して、興味のある量の勾配を提供する。
コード固有でない随伴解法を提案する。
カオス流の長期平均勾配に対するその応用を実証する。
- 参考スコア(独自算出の注目度): 4.266376725904727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In one calculation, adjoint sensitivity analysis provides the gradient of a quantity of interest with respect to all system's parameters. Conventionally, adjoint solvers need to be implemented by differentiating computational models, which can be a cumbersome task and is code-specific. To propose an adjoint solver that is not code-specific, we develop a data-driven strategy. We demonstrate its application on the computation of gradients of long-time averages of chaotic flows. First, we deploy a parameter-aware echo state network (ESN) to accurately forecast and simulate the dynamics of a dynamical system for a range of system's parameters. Second, we derive the adjoint of the parameter-aware ESN. Finally, we combine the parameter-aware ESN with its adjoint version to compute the sensitivities to the system parameters. We showcase the method on a prototypical chaotic system. Because adjoint sensitivities in chaotic regimes diverge for long integration times, we analyse the application of ensemble adjoint method to the ESN. We find that the adjoint sensitivities obtained from the ESN match closely with the original system. This work opens possibilities for sensitivity analysis without code-specific adjoint solvers.
- Abstract(参考訳): 1つの計算では、随伴感度解析は全ての系のパラメータに対する関心量の勾配を与える。
従来、随伴解法は計算モデルを微分することで実装する必要があるが、これは面倒な作業であり、コード固有である。
コード固有でない随伴解法を提案するため,我々はデータ駆動型戦略を開発する。
カオスフローの長時間平均の勾配計算におけるその応用を実証する。
まず,パラメータ認識型エコー状態ネットワーク(ESN)をデプロイし,システムパラメータの範囲の動的システムのダイナミクスを正確に予測し,シミュレートする。
次にパラメータ認識型ESNの随伴関係を導出する。
最後に、パラメータ認識型ESNと隣接バージョンを組み合わせて、システムパラメータに対する感度を計算する。
本手法を原型カオスシステムに示す。
カオス状態における随伴感性は長い統合期間に分散するため,エンサンブル随伴法をESNに適用する。
ESNから得られた随伴感度は,元のシステムと密に一致した。
この研究は、コード固有の随伴解法を使わずに感度解析の可能性を開く。
関連論文リスト
- Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
提案手法は, 3次元, 4次, 剛性方程式を含む, 様々な雑音レベルの微分方程式を探索する。
パラメータ推定は変動係数が小さい真の値に正確に収束し、ノイズに頑健性を示す。
論文 参考訳(メタデータ) (2024-10-13T21:48:51Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
本稿では,新しい物理インフォームドニューラルネットワーク(PI-VEGAN)について紹介する。
PI-VEGANは微分方程式の前方、逆、混合問題に効果的に取り組む。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-21T01:18:02Z) - Parameter Identification for Partial Differential Equations with
Spatiotemporal Varying Coefficients [5.373009527854677]
種々の偏微分方程式によって制御される多状態系のパラメータ同定を容易にする枠組みを提案する。
我々のフレームワークは、制約付き自己適応型ニューラルネットワークと、サブネットワーク物理インフォームドニューラルネットワークの2つの統合コンポーネントで構成されている。
我々は,時間変化パラメータを持つ1次元バーガースの場合と空間変化パラメータを持つ2次元波動方程式の2つの数値ケースにおいて,本フレームワークの有効性を実証した。
論文 参考訳(メタデータ) (2023-06-30T07:17:19Z) - General Hamiltonian Representation of ML Detection Relying on the
Quantum Approximate Optimization Algorithm [74.6114458993128]
最適化問題を解くために考案された量子近似最適化アルゴリズム(QAOA)は、既存のノイズのある中間スケール量子(NISQ)デバイス上で実行することができる。
我々は、QAOAを適切に適応させることにより、一般星座の最大可能性(ML)検出問題を解く。
特に、M-ary Gray-mapped Quarature amplitude modulation (MQAM) 星座では、同相成分をコードする特定の量子ビットと二次成分をコードする量子ビットが、興味のある量子系において独立であることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:11:24Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Learning via nonlinear conjugate gradients and depth-varying neural ODEs [5.565364597145568]
ニューラル常微分方程式(NODE)における深度可変パラメータの教師付き再構成の逆問題について考察する。
提案したパラメータ再構成は,コスト関数の最小化による一般一階微分方程式に対して行われる。
感度問題は、トレーニングされたパラメータの摂動下でのネットワーク出力の変化を推定することができる。
論文 参考訳(メタデータ) (2022-02-11T17:00:48Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Formal Synthesis of Lyapunov Neural Networks [61.79595926825511]
本稿では,リアプノフ関数の自動合成法を提案する。
我々は,数値学習者と記号検証器が相互作用して,確実に正しいリアプノフニューラルネットワークを構築する,反例誘導方式を採用する。
提案手法は,Lyapunov関数を他の手法よりも高速かつ広い空間領域で合成する。
論文 参考訳(メタデータ) (2020-03-19T17:21:02Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。