論文の概要: PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2307.11289v1
- Date: Fri, 21 Jul 2023 01:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:01:53.505137
- Title: PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations
- Title(参考訳): PI-VEGAN:確率微分方程式に対する物理インフォームド変分埋め込み生成逆数ネットワーク
- Authors: Ruisong Gao, Yufeng Wang, Min Yang, Chuanjun Chen
- Abstract要約: 本稿では,新しい物理インフォームドニューラルネットワーク(PI-VEGAN)について紹介する。
PI-VEGANは微分方程式の前方、逆、混合問題に効果的に取り組む。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
- 参考スコア(独自算出の注目度): 14.044012646069552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new category of physics-informed neural networks called physics
informed variational embedding generative adversarial network (PI-VEGAN), that
effectively tackles the forward, inverse, and mixed problems of stochastic
differential equations. In these scenarios, the governing equations are known,
but only a limited number of sensor measurements of the system parameters are
available. We integrate the governing physical laws into PI-VEGAN with
automatic differentiation, while introducing a variational encoder for
approximating the latent variables of the actual distribution of the
measurements. These latent variables are integrated into the generator to
facilitate accurate learning of the characteristics of the stochastic partial
equations. Our model consists of three components, namely the encoder,
generator, and discriminator, each of which is updated alternatively employing
the stochastic gradient descent algorithm. We evaluate the effectiveness of
PI-VEGAN in addressing forward, inverse, and mixed problems that require the
concurrent calculation of system parameters and solutions. Numerical results
demonstrate that the proposed method achieves satisfactory stability and
accuracy in comparison with the previous physics-informed generative
adversarial network (PI-WGAN).
- Abstract(参考訳): 本稿では, 確率微分方程式の前方, 逆, 混合問題に効果的に取り組んだ, 変動埋め込み生成逆数ネットワーク (PI-VEGAN) と呼ばれる新しい物理情報ニューラルネットワークのカテゴリを提案する。
これらのシナリオでは、支配方程式が知られているが、システムパラメータのセンサ測定は限られた数しかない。
実測値の潜在変数を近似する変分エンコーダを導入しながら, 物理法則をPI-VEGANと自動微分に統合する。
これらの潜在変数は生成器に統合され、確率的部分方程式の特性の正確な学習を容易にする。
本モデルは, エンコーダ, ジェネレータ, 判別器の3成分で構成され, それぞれが確率勾配降下アルゴリズムを用いて更新される。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
提案手法は,従来の物理式生成逆ネットワーク (pi-wgan) と比較して,安定性と精度が良好であることを示す。
関連論文リスト
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification [4.804365706049767]
我々は、低次モデル(ROM)を構築するためのデータ駆動型非侵入型フレームワークを提案する。
詳細は、縮小座標の分布を特定するための変分SINIで構成されている。
トレーニングされたオフラインで、特定されたモデルは、新しいパラメータインスタンスと、対応するフルタイムソリューションを計算するための新しい初期条件のためにクエリすることができる。
論文 参考訳(メタデータ) (2024-05-31T15:16:48Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
微分方程式における前方・逆・混合問題に対処するために,新しい物理情報ニューラルネットワークのクラスを提案する。
我々のモデルは、ジェネレータとエンコーダの2つのキーコンポーネントで構成され、どちらも勾配降下によって交互に更新される。
従来の手法とは対照的に、より低次元の潜在特徴空間内で機能する間接マッチングを用いる。
論文 参考訳(メタデータ) (2023-11-03T04:29:49Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。