論文の概要: A dancing bear, a colleague, or a sharpened toolbox? The cautious adoption of generative AI technologies in digital humanities research
- arxiv url: http://arxiv.org/abs/2404.12458v3
- Date: Mon, 14 Jul 2025 18:43:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.672877
- Title: A dancing bear, a colleague, or a sharpened toolbox? The cautious adoption of generative AI technologies in digital humanities research
- Title(参考訳): ダンスベア、同僚、あるいは鋭い道具箱?デジタル人文科学研究における生成AI技術の慎重な採用
- Authors: Rongqian Ma, Meredith Dedema, Andrew Cox,
- Abstract要約: 生成人工知能(GenAI)技術の出現は研究の状況を変えつつある。
本稿では、デジタル人文科学(DH)研究者が研究のためにGenAI技術をどのように採用し、批判的に評価するかを考察する。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of generative artificial intelligence (GenAI) technologies has been changing the research landscape and potentially has significant implications for Digital Humanities (DH), a field inherently intertwined with technologies. This article investigates how DH scholars adopt and critically evaluate GenAI technologies for research. Drawing on 76 responses collected from an international survey study and 15 semi-structured interviews with DH scholars, we explored the rationale for adopting GenAI tools in research, identified the specific practices of using GenAI tools, and analyzed scholars' collective perceptions regarding the benefits, risks, and challenges. The results reveal that DH research communities hold divided opinions and differing imaginations towards the role of GenAI in DH scholarship. While scholars acknowledge the benefits of GenAI in enhancing research efficiency and enabling reskilling, many remain concerned about its potential to disrupt their intellectual identities. Situated within the history of DH and viewed through the lens of Actor-Network Theory, our findings suggest that the adoption of GenAI is gradually changing the field, though this transformation remains contested, shaped by ongoing negotiations among multiple human and non-human actors. Our study is one of the first empirical analyses on this topic and has the potential to serve as a building block for future inquiries into the impact of GenAI on DH scholarship.
- Abstract(参考訳): 生成人工知能(GenAI)技術の出現は研究の状況を変えつつあり、デジタル人間性(DH)にとって潜在的に重要な意味を持つ。
本稿では、DH研究者が研究のためにGenAI技術をどのように採用し、批判的に評価するかを考察する。
我々は,国際調査から収集した76の回答とDH研究者との15の半構造化インタビューに基づいて,GenAIツールを研究に採用する根拠を探り,GenAIツールの使用の具体的な実践を特定し,そのメリット,リスク,課題に関する研究者の集団的認識を分析した。
その結果、DH研究コミュニティは、DH奨学金におけるGenAIの役割について、意見の相違と想像の相違があることが判明した。
研究者は研究効率の向上とリスキル化の実現にGenAIの利点を認めているが、多くの人はその知的アイデンティティを破壊できる可能性を懸念している。
DHの歴史の中にあり、アクター・ネットワーク理論のレンズを通して見れば、GenAIの採用が徐々にフィールドを変えつつあることが示唆されるが、この変革は、複数の人間と非人間のアクターの間で進行中の交渉によって形成されている。
本研究は,GenAIがDH奨学金に与える影響に関する今後の調査のためのビルディングブロックとして機能する可能性を持つ,このトピックに関する最初の実証分析の1つである。
関連論文リスト
- The GenAI Generation: Student Views of Awareness, Preparedness, and Concern [1.5709900716890133]
均質な政策・構造の発展に乗じて、源内は独自の時代を定め、元内世代を興した。
本研究では, 学生のGenAIに対する意識を, 任意のオープンエンド質問による簡潔な調査を通じて調査する。
GenAIに対するカリキュラムの露出が大きい学生は、より準備が整う傾向があり、それのない学生は脆弱性や不確実性を表現する傾向にある。
論文 参考訳(メタデータ) (2025-05-04T19:37:13Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
本研究は, 生産型AIの活用と展望について, 工学教育者を対象にした調査から得られた知見を報告する。
我々は、GenAIの利用と快適性、GenAIに対する全体的な視点、教育、学習、研究にGenAIを使うことの課題と潜在的害について質問し、彼らの教室でのGenAIの使用と統合に対するアプローチが、GenAIの経験とそれに対する認識に影響を与えているかどうかを検討した。
論文 参考訳(メタデータ) (2025-02-01T21:29:53Z) - Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge [78.35388859345056]
我々は,MLコミュニティが,GenAIシステム評価のための計測機器を開発する際に,社会科学の学習と図面の恩恵を受けることを論じる。
我々は,GenAIシステムの能力,行動,および影響に関する概念を測定するための,社会科学からの計測理論に基づく4段階の枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-01T21:09:51Z) - Research Integrity and GenAI: A Systematic Analysis of Ethical Challenges Across Research Phases [0.0]
学界における生成AI(GenAI)ツールの急速な開発と利用は、ユーザにとって複雑で多面的な倫理的課題を提示している。
本研究は、さまざまな研究段階におけるGenAIの使用による倫理的懸念について検討することを目的とする。
論文 参考訳(メタデータ) (2024-12-13T13:31:45Z) - "So what if I used GenAI?" -- Implications of Using Cloud-based GenAI in Software Engineering Research [0.0]
本論文は、GenAIが用いられている様々な研究の側面に光を当て、その法的な意味を初心者や芽生えの研究者に認識させるものである。
我々は、GenAIを使用するすべてのソフトウェア研究者が、責任の主張を暴露する重大なミスを避けるために意識すべきであるという現在の知識について、重要な側面を要約する。
論文 参考訳(メタデータ) (2024-12-10T06:18:15Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
コンピュータ学生のGenAI利用と認識に関する先行研究は限られている。
私たちは、小さなエンジニアリングに焦点を当てたR1大学で、すべてのコンピュータサイエンス専攻を調査しました。
我々は,GenAIと教育に関する新たな議論に対する知見の影響について論じる。
論文 参考訳(メタデータ) (2024-11-17T20:17:47Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
論文 参考訳(メタデータ) (2024-08-13T13:10:03Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - Higher education assessment practice in the era of generative AI tools [0.37282630026096586]
本研究は,データサイエンス,データ分析,建設管理の3つの指標を用いて実験を行った。
以上の結果から,GenAIツールが主観的知識,問題解決,分析的,批判的思考,プレゼンテーション能力を示すことが明らかとなった。
この結果から,AIツールをHEでの教育や学習に活用する方法を推奨した。
論文 参考訳(メタデータ) (2024-04-01T10:43:50Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - ChatGPT and Beyond: The Generative AI Revolution in Education [0.21756081703275998]
この調査は、2022年11月から2023年7月までに出版された学術文献を調査している。
教育における生成AIモデル、特にChatGPTの役割の進化を照らすことを目的としている。
このレビューの結果は、教育者、研究者、政策立案者に対して、AI技術の学習環境への統合に関する情報的な決定を下すよう促す。
論文 参考訳(メタデータ) (2023-11-26T05:34:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Towards a Science of Human-AI Decision Making: A Survey of Empirical
Studies [22.214709837295906]
AI支援による人間の意思決定を強化する研究コミュニティへの関心が高まっている。
人間-AI意思決定の新たな分野は、人間がAIとどのように相互作用し、どのように働くかに関する基礎的な理解を形成するための経験的アプローチを取り入れなければならない。
論文 参考訳(メタデータ) (2021-12-21T19:00:02Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。