Approximating Korobov Functions via Quantum Circuits
- URL: http://arxiv.org/abs/2404.14570v2
- Date: Sat, 28 Sep 2024 21:42:02 GMT
- Title: Approximating Korobov Functions via Quantum Circuits
- Authors: Junaid Aftab, Haizhao Yang,
- Abstract summary: We explicitly construct quantum circuits that can approximate $d$-dimensional functions in the Korobov function space.
Our work provides quantitative approximation error bounds and estimates the complexity of implementing the proposed quantum circuits.
- Score: 6.460951804337735
- License:
- Abstract: Quantum computing has the potential to tackle large-scale problems in scientific computation, including high-dimensional partial differential equations (PDE). Therefore, understanding the capability of quantum circuits through the lens of approximation theory is essential for evaluating the complexity needed for these circuits to solve such problems. In this paper, we explicitly construct quantum circuits that can approximate $d$-dimensional functions in the Korobov function space. We accomplish this by utilizing the quantum signal processing algorithm and the linear combinations of unitaries technique to build quantum circuits that implement Chebyshev polynomials, which are capable of approximating functions in the Korobov function space. Our work provides quantitative approximation error bounds and estimates the complexity of implementing the proposed quantum circuits. Since the Korobov function space is a subspace of the certain Sobolev spaces which are ubiquitous in studying solutions to high-dimensional PDE, our work develops a theoretical foundation for implementing a large class of functions suitable for applications on a quantum computer.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Quantum computation of conical intersections on a programmable superconducting quantum processor [10.064448021157139]
Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
arXiv Detail & Related papers (2024-02-20T04:12:40Z) - Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit [0.0]
Superconducting quantum circuits are a promising hardware platform for realizing a fault-tolerant quantum computer.
We develop a framework to construct a superconducting quantum circuit's quantized Hamiltonian from its physical description.
We implement the methods described in this work in an open-source Python package SQcircuit.
arXiv Detail & Related papers (2022-06-16T17:24:51Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
This work proposes a novel approach by using the Quantum Amplitude Damping operation as a resource, in order to construct an efficient quantum algorithm for solving homogeneous LDEs.
We show that such an open quantum system-inspired circuitry allows for constructing the real exponential terms in the solution in a non-interferometric.
arXiv Detail & Related papers (2021-11-10T11:25:32Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Simulation of Light-Front Parton Correlators [0.0]
The physics of high-energy colliders relies on the knowledge of non-perturbative parton correlators.
We propose a quantum algorithm to perform a quantum simulation of these type of correlators.
arXiv Detail & Related papers (2020-11-02T19:38:33Z) - Efficient simulatability of continuous-variable circuits with large
Wigner negativity [62.997667081978825]
Wigner negativity is known to be a necessary resource for computational advantage in several quantum-computing architectures.
We identify vast families of circuits that display large, possibly unbounded, Wigner negativity, and yet are classically efficiently simulatable.
We derive our results by establishing a link between the simulatability of high-dimensional discrete-variable quantum circuits and bosonic codes.
arXiv Detail & Related papers (2020-05-25T11:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.