論文の概要: Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy
- arxiv url: http://arxiv.org/abs/2404.14807v1
- Date: Tue, 23 Apr 2024 07:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 15:00:46.296159
- Title: Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy
- Title(参考訳): X線顕微鏡と光シート蛍光顕微鏡の基準自由多モードボリュームレジストレーション
- Authors: Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier,
- Abstract要約: X線顕微鏡と光シート蛍光顕微鏡は、骨改造疾患の予備研究において2つの重要な画像ツールとして登場した。
このような独立して取得した大規模ボリュームを登録することは、実数および参照なしのシナリオでは極めて困難である。
本稿では,XRMとLSFMのボリューム登録のための高速な2段階パイプラインを提案する。
- 参考スコア(独自算出の注目度): 4.09268945311192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM) have emerged as two pivotal imaging tools in preclinical research on bone remodeling diseases, offering micrometer-level resolution. Integrating these complementary modalities provides a holistic view of bone microstructures, facilitating function-oriented volume analysis across different disease cycles. However, registering such independently acquired large-scale volumes is extremely challenging under real and reference-free scenarios. This paper presents a fast two-stage pipeline for volume registration of XRM and LSFM. The first stage extracts the surface features and employs two successive point cloud-based methods for coarse alignment. The second stage fine-tunes the initial alignment using a modified cross-correlation method, ensuring precise volumetric registration. Moreover, we propose residual similarity as a novel metric to assess the alignment of two complementary modalities. The results imply robust gradual improvement across the stages. In the end, all correlating microstructures, particularly lacunae in XRM and bone cells in LSFM, are precisely matched, enabling new insights into bone diseases like osteoporosis which are a substantial burden in aging societies.
- Abstract(参考訳): 近年,X線顕微鏡 (XRM) と光シート蛍光顕微鏡 (LSFM) が骨修復疾患の予備研究において2つの重要な画像ツールとして登場し,顕微鏡レベルの解像度を提供している。
これらの相補的なモダリティを統合することで、骨の微細構造の全体像が得られ、様々な疾患サイクルにおける機能指向の体積分析が促進される。
しかし、そのような独立に取得した大規模ボリュームを登録することは、実数と参照なしのシナリオでは極めて困難である。
本稿では,XRMとLSFMのボリューム登録のための高速な2段階パイプラインを提案する。
第1段階は表面の特徴を抽出し、粗いアライメントのための2つの連続点雲ベースの手法を用いる。
第2段階は、修正された相互相関法を用いて初期アライメントを微調整し、正確なボリューム登録を保証する。
さらに,2つの相補的モダリティのアライメントを評価するための新しい指標として残差類似性を提案する。
その結果,段階的に緩やかな改善が得られた。
最終的に、XRMのラグナやLSFMの骨細胞など、関連するすべてのミクロ構造が正確に一致し、高齢化社会において重大な負担となる骨粗しょう症のような骨疾患に対する新たな洞察がもたらされる。
関連論文リスト
- MICCAI-CDMRI 2023 QuantConn Challenge Findings on Achieving Robust Quantitative Connectivity through Harmonized Preprocessing of Diffusion MRI [11.976600830879757]
白色物質の変化は、神経疾患とその進行にますます関係している。
DW-MRIデータの定量的解析は、様々な取得プロトコルから生じる矛盾によって妨げられる。
MICCAI-CDMRI 2023 QuantConnチャレンジでは、同じスキャナーで収集された同じ個人から生のデータが提供されたが、2つの異なる取得がなされた。
その結果,バンドル表面積,分数異方性,コネクトームの非等方性,間隙数,エッジ数,モジュラリティ,結節強度,参加係数は,獲得によって最も偏っていることがわかった。
機械学習ボクセル補正、RISHマッピングおよびNeSH法を効果的に活用する
論文 参考訳(メタデータ) (2024-11-14T17:37:19Z) - A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
単一X線画像から擬似MRIボリュームを生成することができる新しい拡散型Xray2MRIモデルを提案する。
実験の結果,提案手法は実際のMRIスキャンを近似した擬似MRIシーケンスを生成することができることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:44:34Z) - MARVEL: MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs [0.8901227918730564]
本稿では,現実的な微小血管ネットワークを含む数値ボクセルからのMR信号をシミュレーションする効率的な方法を提案する。
3人のボランティアに対して行った結果から,我々のアプローチはより高速に微小血管パラメータの定量的マップを作成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-15T08:09:54Z) - Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss [0.0]
長期のCOVIDは、持続的な症状、特に肺障害によって特徴づけられる。
XeMRIからの機能的データとCTからの構造的データを統合することは、包括的な分析と効果的な治療戦略に不可欠である。
本稿では,長期肺CTと陽子密度MRIデータとの整合性に優れた画像登録手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:19:18Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
本稿では,T1重み付き画像(T1WIs)を補助モダリティとして活用し,T2WIsの取得を高速化するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
最適輸送(OT)を用いてT1WIを整列させてT2WIを合成し、クロスモーダル合成を行う。
再構成されたT2WIと合成されたT2WIがT2画像多様体に近づき、繰り返しが増加することを示す。
論文 参考訳(メタデータ) (2023-05-04T12:20:51Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
マルチレベル・クロスモーダルアライメントを学習するためのUnify, Align, then Refine (UAR)アプローチを提案する。
本稿では,Latent Space Unifier,Cross-modal Representation Aligner,Text-to-Image Refinerの3つの新しいモジュールを紹介する。
IU-XrayおよびMIMIC-CXRベンチマークデータセットの実験と解析は、UARの様々な最先端手法に対する優位性を実証している。
論文 参考訳(メタデータ) (2023-03-28T12:42:12Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
本稿では,MRIによる他のモダリティ獲得のためのアンダーサンプリングパターンを最適化するための反復的フレームワークを提案する。
公開データセット上で学習したアンダーサンプリングパターンの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-11-11T04:04:48Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。