論文の概要: BigReg: An Efficient Registration Pipeline for High-Resolution X-Ray and Light-Sheet Fluorescence Microscopy
- arxiv url: http://arxiv.org/abs/2404.14807v2
- Date: Tue, 20 May 2025 11:52:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.03876
- Title: BigReg: An Efficient Registration Pipeline for High-Resolution X-Ray and Light-Sheet Fluorescence Microscopy
- Title(参考訳): BigReg: 高分解能X線および光シート蛍光顕微鏡のための効率的なレジストレーションパイプライン
- Authors: Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier,
- Abstract要約: BigRegは、XRMとLSFMデータの大量登録のために設計された、高速で2段階のパイプラインである。
重要なミクロ構造、特にXRMのラグナとLSFMの骨細胞は正確に整列しており、骨粗しょう症の病理学に対する前例のない洞察を与えている。
- 参考スコア(独自算出の注目度): 4.09268945311192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM) have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. These modalities offer micrometer-level resolution, and their integration allows for a complementary examination of bone microstructures which is essential for analyzing functional changes. However, registering high-resolution volumes from these independently scanned modalities poses substantial challenges, especially in real-world and reference-free scenarios. This paper presents BigReg, a fast, two-stage pipeline designed for large-volume registration of XRM and LSFM data. The first stage involves extracting surface features and applying two successive point cloud-based methods for coarse alignment. The subsequent stage refines this alignment using a modified cross-correlation technique, achieving precise volumetric registration. Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of 8.36\,\textmu m\,$\pm$\,0.12\,\textmu m and a landmark fitness (LM fitness) of 85.71\%\,$\pm$\,1.02\%. Moreover, BigReg can provide an optimal initialization for mutual information-based methods which otherwise fail independently, further reducing LMD to 7.24\,\textmu m\,$\pm$\,0.11\,\textmu m and increasing LM fitness to 93.90\%\,$\pm$\,0.77\%. Ultimately, key microstructures, notably lacunae in XRM and bone cells in LSFM, are accurately aligned, enabling unprecedented insights into the pathology of osteoporosis.
- Abstract(参考訳): 近年,X線顕微鏡 (XRM) と光シート蛍光顕微鏡 (LSFM) が前臨床研究, 特に骨粗しょう症などの骨修復疾患の研究において重要なツールとして出現している。
これらのモダリティは、マイクロメーターレベルの解像度を提供し、その統合により、機能的変化を分析するのに不可欠な骨の微細構造を補完的に調べることができる。
しかし、これらの独立にスキャンされたモダリティから高解像度のボリュームを登録することは、特に現実世界や参照なしのシナリオにおいて重大な課題を引き起こす。
本稿では,XRMおよびLSFMデータの大規模登録のための高速2段階パイプラインであるBigRegについて述べる。
第1段階では、表面の特徴を抽出し、粗いアライメントのために2つの連続した点雲ベースの方法を適用する。
その後の段階は、修正された相互相関技術を用いてこのアライメントを洗練し、正確なボリューム登録を実現する。
専門家注釈付きランドマークと拡張テストデータを用いた評価では、BigRegはランドマークベース登録の精度に8.36\,\textmu m\,$\pm$\,0.12\,\textmu mと85.71\%,$\pm$\,1.02\%のランドマークベース登録にアプローチしている。
さらに、BigRegは、独立に失敗する相互情報ベースのメソッドの最適初期化を提供し、さらに LMD を 7.24\,\textmu m\,$\pm$\,0.11\,\textmu m に減らし、LM の適合度を 93.90\%\,$\pm$\,0.77\% に向上させることができる。
最終的に、重要なミクロ構造、特にXRMのラグナとLSFMの骨細胞は正確に整列しており、骨粗しょう症の病理に関する前例のない洞察を可能にしている。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
我々は、周波数誘導および粗粒拡散モデル(FgC2F-UDiff)という新しい統合合成モデルを提案する。
論文 参考訳(メタデータ) (2025-01-07T04:42:45Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - MICCAI-CDMRI 2023 QuantConn Challenge Findings on Achieving Robust Quantitative Connectivity through Harmonized Preprocessing of Diffusion MRI [11.976600830879757]
白色物質の変化は、神経疾患とその進行にますます関係している。
DW-MRIデータの定量的解析は、様々な取得プロトコルから生じる矛盾によって妨げられる。
MICCAI-CDMRI 2023 QuantConnチャレンジでは、同じスキャナーで収集された同じ個人から生のデータが提供されたが、2つの異なる取得がなされた。
その結果,バンドル表面積,分数異方性,コネクトームの非等方性,間隙数,エッジ数,モジュラリティ,結節強度,参加係数は,獲得によって最も偏っていることがわかった。
機械学習ボクセル補正、RISHマッピングおよびNeSH法を効果的に活用する
論文 参考訳(メタデータ) (2024-11-14T17:37:19Z) - A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
単一X線画像から擬似MRIボリュームを生成することができる新しい拡散型Xray2MRIモデルを提案する。
実験の結果,提案手法は実際のMRIスキャンを近似した擬似MRIシーケンスを生成することができることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:44:34Z) - MARVEL: MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs [0.8901227918730564]
本稿では,現実的な微小血管ネットワークを含む数値ボクセルからのMR信号をシミュレーションする効率的な方法を提案する。
3人のボランティアに対して行った結果から,我々のアプローチはより高速に微小血管パラメータの定量的マップを作成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-15T08:09:54Z) - Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss [0.0]
長期のCOVIDは、持続的な症状、特に肺障害によって特徴づけられる。
XeMRIからの機能的データとCTからの構造的データを統合することは、包括的な分析と効果的な治療戦略に不可欠である。
本稿では,長期肺CTと陽子密度MRIデータとの整合性に優れた画像登録手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:19:18Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
本稿では,T1重み付き画像(T1WIs)を補助モダリティとして活用し,T2WIsの取得を高速化するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
最適輸送(OT)を用いてT1WIを整列させてT2WIを合成し、クロスモーダル合成を行う。
再構成されたT2WIと合成されたT2WIがT2画像多様体に近づき、繰り返しが増加することを示す。
論文 参考訳(メタデータ) (2023-05-04T12:20:51Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
マルチレベル・クロスモーダルアライメントを学習するためのUnify, Align, then Refine (UAR)アプローチを提案する。
本稿では,Latent Space Unifier,Cross-modal Representation Aligner,Text-to-Image Refinerの3つの新しいモジュールを紹介する。
IU-XrayおよびMIMIC-CXRベンチマークデータセットの実験と解析は、UARの様々な最先端手法に対する優位性を実証している。
論文 参考訳(メタデータ) (2023-03-28T12:42:12Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
本稿では,MRIによる他のモダリティ獲得のためのアンダーサンプリングパターンを最適化するための反復的フレームワークを提案する。
公開データセット上で学習したアンダーサンプリングパターンの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-11-11T04:04:48Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。