Metric-Guided Conformal Bounds for Probabilistic Image Reconstruction
- URL: http://arxiv.org/abs/2404.15274v3
- Date: Tue, 04 Mar 2025 04:07:12 GMT
- Title: Metric-Guided Conformal Bounds for Probabilistic Image Reconstruction
- Authors: Matt Y Cheung, Tucker J Netherton, Laurence E Court, Ashok Veeraraghavan, Guha Balakrishnan,
- Abstract summary: We propose a framework for computing provably valid prediction bounds on claims from black-box image reconstruction algorithms.<n>We show that our framework produces bounds with better semantical interpretation than conventional pixel-based bounding approaches.
- Score: 17.252204163950964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern deep learning reconstruction algorithms generate impressively realistic scans from sparse inputs, but can often produce significant inaccuracies. This makes it difficult to provide statistically guaranteed claims about the true state of a subject from scans reconstructed by these algorithms. In this study, we propose a framework for computing provably valid prediction bounds on claims derived from probabilistic black-box image reconstruction algorithms. The key insights behind our framework are to represent reconstructed scans with a derived clinical metric of interest, and to calibrate bounds on the ground truth metric with conformal prediction (CP) using a prior calibration dataset. These bounds convey interpretable feedback about the subject's state, and can also be used to retrieve nearest-neighbor reconstructed scans for visual inspection. We demonstrate the utility of this framework on sparse-view computed tomography (CT) for fat mass quantification and radiotherapy planning tasks. Results show that our framework produces bounds with better semantical interpretation than conventional pixel-based bounding approaches. Furthermore, we can flag dangerous outlier reconstructions that look plausible but have statistically unlikely metric values.
Related papers
- Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification [0.0]
Ptychography is a scanning coherent diffractive imaging technique that enables imaging nanometer-scale features in extended samples.
This paper proposes a Bayesian inversion method for ptychography that performs effectively even with less overlap between neighboring scan locations.
arXiv Detail & Related papers (2024-12-14T16:16:37Z) - Deep Guess acceleration for explainable image reconstruction in sparse-view CT [0.0]
Sparse-view Computed (CT) is an emerging protocol designed to reduce X-ray dose radiation in medical imaging.
Traditional Filtered Back Projection reconstructions suffer from severe artifacts due to sparse data.
In contrast, Model-Based Iterative Reconstruction (MBIR) are too computationally costly for clinical use.
arXiv Detail & Related papers (2024-12-02T16:49:42Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - XctDiff: Reconstruction of CT Images with Consistent Anatomical Structures from a Single Radiographic Projection Image [4.169099546864143]
XctDiff is an algorithm framework for reconstructing CT from a single radiograph.
We first design a progressive feature extraction strategy that is able to extract robust 3D priors.
Then, we use the extracted prior information to guide the CT reconstruction in the latent space.
arXiv Detail & Related papers (2024-06-07T06:50:19Z) - Adaptive Correspondence Scoring for Unsupervised Medical Image Registration [9.294341405888158]
Existing methods rely on image reconstruction as the primary supervision signal.
We propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training.
Our framework consistently outperforms other methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-12-01T01:11:22Z) - Unsupervised Landmark Discovery Using Consistency Guided Bottleneck [63.624186864522315]
We introduce a consistency-guided bottleneck in an image reconstruction-based pipeline.
We propose obtaining pseudo-supervision via forming landmark correspondence across images.
The consistency then modulates the uncertainty of the discovered landmarks in the generation of adaptive heatmaps.
arXiv Detail & Related papers (2023-09-19T10:57:53Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging.
Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images.
We propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF)
APRF can build the continuous representation between adjacent projection views via the spatial constraints.
arXiv Detail & Related papers (2023-07-11T14:04:12Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Subject-specific quantitative susceptibility mapping using patch based
deep image priors [13.734472448148333]
We propose a subject-specific, patch-based, unsupervised learning algorithm to estimate the susceptibility map.
We make the problem well-posed by exploiting the redundancies across the patches of the map using a deep convolutional neural network.
We tested the algorithm on a 3D invivo dataset and demonstrated improved reconstructions over competing methods.
arXiv Detail & Related papers (2022-10-10T02:28:53Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - A Probabilistic Deep Image Prior for Computational Tomography [0.19573380763700707]
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty.
We construct a Bayesian prior for tomographic reconstruction, which combines the classical total variation (TV) regulariser with the modern deep image prior (DIP)
For the inference, we develop an approach based on the linearised Laplace method, which is scalable to high-dimensional settings.
arXiv Detail & Related papers (2022-02-28T14:47:14Z) - Validation and Generalizability of Self-Supervised Image Reconstruction
Methods for Undersampled MRI [4.832984894979636]
Two self-supervised algorithms based on self-supervised denoising and neural network image priors were investigated.
Their generalizability was tested with prospectively under-sampled data from experimental conditions different to the training.
arXiv Detail & Related papers (2022-01-29T09:06:04Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images.
Minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences.
We propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters.
arXiv Detail & Related papers (2021-03-30T17:07:49Z) - Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse
Problems: Applications in Medical Imaging [0.9137554315375922]
Deep neural networks (DNNs) are the method of choice for solving linear inverse problems.
We propose a framework that post-processes the output of DNNs with an optimization algorithm that enforces measurement consistency.
Experiments on MR images show that enforcing measurement consistency via our method can lead to large gains in reconstruction performance.
arXiv Detail & Related papers (2020-11-29T15:19:41Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Structured and Localized Image Restoration [141.75042935077465]
We present a novel approach to image restoration that leverages ideas from localized structured prediction and non-linear multi-task learning.
We derive the corresponding algorithms for energies based on the mean-squared and Euclidean norm errors.
arXiv Detail & Related papers (2020-06-16T15:43:12Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.