論文の概要: Covariant spatio-temporal receptive fields for neuromorphic computing
- arxiv url: http://arxiv.org/abs/2405.00318v1
- Date: Wed, 1 May 2024 04:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:27:08.204927
- Title: Covariant spatio-temporal receptive fields for neuromorphic computing
- Title(参考訳): ニューロモルフィックコンピューティングのための共変時空間受容場
- Authors: Jens Egholm Pedersen, Jörg Conradt, Tony Lindeberg,
- Abstract要約: この研究は、スケール理論と計算神経科学の取り組みを組み合わせて、ニューロモルフィックシステムにおける時間的信号を処理するための理論的に確立された方法を特定する。
私たちのコントリビューションは、信号処理やイベントベースのビジョンに即時に関係しており、メモリや制御など、空間や時間とともに他の処理タスクにも拡張することができます。
- 参考スコア(独自算出の注目度): 1.9365675487641305
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
- Abstract(参考訳): 生物学的神経系は、より速く、安価で、よりエネルギー効率の良いコンピュータへのインスピレーションの重要な源となっている。
ニューロモルフィックの規律は、脳を共進化系と見なし、ハードウェアとアルゴリズムを同時に最適化する。
計算を物理基板に持ち込む際には明らかに効率が向上するが、現在では効率的な実装を導くための理論が欠如している。
本稿では,空間上のアフィンガウス核と漏洩積分器と時間経過に伴う漏洩統合・火災モデルに基づく時空間受容場の観点から,ニューロモルフィックシステムの原理的計算モデルを提案する。
我々の理論は、空間的なアフィンや時間的スケーリングの変換と、哺乳類の脳の視覚的処理とよく似ていることが証明できる。
我々は,これらの時空間受容場をイベントベース視覚タスクの先行として使用し,それ以外はイベントベース視覚において問題となるスパイクネットワークのトレーニングを改善することを示す。
この研究は、スケールスペース理論と計算神経科学の取り組みを組み合わせて、ニューロモルフィックシステムにおける時空間信号を処理する理論的に確立された方法を特定する。
私たちのコントリビューションは、信号処理やイベントベースのビジョンに即時に関係しており、メモリや制御など、空間や時間とともに他の処理タスクにも拡張することができます。
関連論文リスト
- Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Neuromorphic Computing and Sensing in Space [69.34740063574921]
神経型コンピュータチップは、生物学的脳の構造を模倣するように設計されている。
ニューロモルフィックデバイスの低消費電力とエネルギー効率に重点を置くことは、宇宙応用には最適である。
論文 参考訳(メタデータ) (2022-12-10T07:46:29Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Bottom-up and top-down approaches for the design of neuromorphic
processing systems: Tradeoffs and synergies between natural and artificial
intelligence [3.874729481138221]
ムーアの法則は指数計算能力の期待を加速させており、システム全体の性能を改善するための新たな方法を求める最終段階に近づいている。
これらの方法の1つは、生物学的ニューラルネットワークシステムの柔軟性と計算効率を達成することを目的とした、脳にインスパイアされた代替コンピューティングアーキテクチャの探索である。
我々は、このパラダイムシフトが実現される際の粒度の異なるレベルについて、その分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2021-06-02T16:51:45Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
ニューロモルフィックアーキテクチャ上で大規模で高速で効率的なニューラルネットワークを構築するには、それらを実装および訓練するためのアルゴリズムを再考する必要がある。
私たちのフレームワークは、非常に幅広いモデル、すなわち状態やダイナミクスが変動方程式によって記述されるシステムに適用されます。
論文 参考訳(メタデータ) (2021-03-18T02:12:48Z) - Finding the Gap: Neuromorphic Motion Vision in Cluttered Environments [0.17812428873698402]
ハエの脳では、運動感受性ニューロンは近くの物体の存在を示す。
変化が動物によって感知されるときに起こる。
飛行昆虫の行動を模倣する神経型クローズドループシステムをモデル化する。
論文 参考訳(メタデータ) (2021-02-16T19:19:23Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。