論文の概要: Interactive Analysis of LLMs using Meaningful Counterfactuals
- arxiv url: http://arxiv.org/abs/2405.00708v1
- Date: Tue, 23 Apr 2024 19:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 17:44:45.374891
- Title: Interactive Analysis of LLMs using Meaningful Counterfactuals
- Title(参考訳): 実測値を用いたLCMの対話的解析
- Authors: Furui Cheng, Vilém Zouhar, Robin Shing Moon Chan, Daniel Fürst, Hendrik Strobelt, Mennatallah El-Assady,
- Abstract要約: カウンターファクト例は、機械学習モデルの意思決定境界を探索するのに有用である。
LLMの分析・説明に反事実的手法をどう適用すればいいのか?
本稿では,完全かつ意味のあるテキストの反事実のバッチを生成するための新しいアルゴリズムを提案する。
我々の実験では、カウンターファクトの97.2%が文法的に正しい。
- 参考スコア(独自算出の注目度): 22.755345889167934
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Counterfactual examples are useful for exploring the decision boundaries of machine learning models and determining feature attributions. How can we apply counterfactual-based methods to analyze and explain LLMs? We identify the following key challenges. First, the generated textual counterfactuals should be meaningful and readable to users and thus can be mentally compared to draw conclusions. Second, to make the solution scalable to long-form text, users should be equipped with tools to create batches of counterfactuals from perturbations at various granularity levels and interactively analyze the results. In this paper, we tackle the above challenges and contribute 1) a novel algorithm for generating batches of complete and meaningful textual counterfactuals by removing and replacing text segments in different granularities, and 2) LLM Analyzer, an interactive visualization tool to help users understand an LLM's behaviors by interactively inspecting and aggregating meaningful counterfactuals. We evaluate the proposed algorithm by the grammatical correctness of its generated counterfactuals using 1,000 samples from medical, legal, finance, education, and news datasets. In our experiments, 97.2% of the counterfactuals are grammatically correct. Through a use case, user studies, and feedback from experts, we demonstrate the usefulness and usability of the proposed interactive visualization tool.
- Abstract(参考訳): カウンターファクトの例は、機械学習モデルの意思決定境界を探索し、特徴属性を決定するのに有用である。
LLMの分析・説明に反事実的手法をどう適用すればいいのか?
主な課題は以下の通りである。
まず、生成されたテキストの偽造物は、ユーザにとって有意義で読みやすいものでなければならないので、結論を引き出すために精神的に比較できる。
第二に、このソリューションを長文テキストにスケーラブルにするために、ユーザーは様々な粒度の摂動から反ファクトのバッチを作成し、結果をインタラクティブに分析するツールを備える必要がある。
本稿では、上記の課題に取り組み、貢献する。
1 異なる粒度のテキストセグメントを除去し、置換することにより、完全かつ意味のあるテキストカウンターファクトのバッチを生成する新しいアルゴリズム
2) LLM Analyzerは,LLMの行動を理解するための対話型可視化ツールである。
提案アルゴリズムは, 医療, 法律, 財務, 教育, ニュースデータセットから得られた1,000のサンプルを用いて, 生成した反事実の文法的正しさを用いて評価する。
我々の実験では、カウンターファクトの97.2%が文法的に正しい。
ユースケース,ユーザスタディ,専門家からのフィードバックを通じて,提案したインタラクティブ視覚化ツールの有用性とユーザビリティを実証する。
関連論文リスト
- Potential and Perils of Large Language Models as Judges of Unstructured Textual Data [0.631976908971572]
本研究では,LLM-as-judgeモデルの有効性を検討した。
LLM-as-judgeは、人間に匹敵するスケーラブルなソリューションを提供するが、人間は微妙で文脈固有のニュアンスを検出するのに優れている。
論文 参考訳(メタデータ) (2025-01-14T14:49:14Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - Using LLMs for Explaining Sets of Counterfactual Examples to Final Users [0.0]
自動意思決定シナリオでは、因果推論手法は基礎となるデータ生成プロセスを分析することができる。
カウンターファクトな例では、最小限の要素が変更される仮説的なシナリオを探求する。
本稿では,アクションの自然言語説明を生成するために,反事実を用いた新しい多段階パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-27T15:13:06Z) - Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs [0.41436032949434404]
我々は,大規模なテキストデータセット内の問題フレーミングと物語分析のための新しい検出手法を開発し,厳密に評価する。
問題フレーミングは大きなコーパスにおいて, 与えられた問題に対して, いずれの視点でも, 確実に, 効率的に検出できることを示す。
論文 参考訳(メタデータ) (2024-08-19T07:14:15Z) - Leveraging Language Models for Emotion and Behavior Analysis in Education [4.219163079329444]
本稿では,大規模言語モデル(LLM)を活用した新しい手法を提案する。
提案手法では, 感情的, エンゲージメント状態の検出において, LLMを誘導するプロンプトを用いて, 非侵襲的でスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-08-13T13:11:53Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations [26.340786701393768]
対話の形で説明を提供する解釈可能性ツールは,ユーザの理解を高める上で有効であることを示す。
しかしながら、対話ベースの説明のための現在のソリューションは、しばしば外部ツールやモジュールを必要とし、設計されていないタスクに簡単に転送できない。
ユーザがその振る舞いについて,最先端の大規模言語モデル(LLM)とチャットできる,アクセスしやすいツールを提案する。
論文 参考訳(メタデータ) (2024-01-23T09:11:07Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
LLM(Large Language Models)は、フィクションと事実を混同し、幻覚として知られる非事実コンテンツを生成することで有名である。
本稿では,ユーザが生成したテキストの信頼性を把握できる対話型システムを提案する。
論文 参考訳(メタデータ) (2023-11-28T14:55:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。