論文の概要: Multivariate trace estimation using quantum state space linear algebra
- arxiv url: http://arxiv.org/abs/2405.01098v1
- Date: Thu, 2 May 2024 08:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:13:51.839377
- Title: Multivariate trace estimation using quantum state space linear algebra
- Title(参考訳): 量子状態空間線形代数を用いた多変量トレース推定
- Authors: Liron Mor Yosef, Shashanka Ubaru, Lior Horesh, Haim Avron,
- Abstract要約: 本稿では,多変量トレース,すなわち行列生成物のトレースを近似する量子アルゴリズムを提案する。
我々のアプローチは、QRAMのような特殊なハードウェアの可用性とは独立して機能する。
- 参考スコア(独自算出の注目度): 13.175145217328534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a quantum algorithm for approximating multivariate traces, i.e. the traces of matrix products. Our research is motivated by the extensive utility of multivariate traces in elucidating spectral characteristics of matrices, as well as by recent advancements in leveraging quantum computing for faster numerical linear algebra. Central to our approach is a direct translation of a multivariate trace formula into a quantum circuit, achieved through a sequence of low-level circuit construction operations. To facilitate this translation, we introduce \emph{quantum Matrix States Linear Algebra} (qMSLA), a framework tailored for the efficient generation of state preparation circuits via primitive matrix algebra operations. Our algorithm relies on sets of state preparation circuits for input matrices as its primary inputs and yields two state preparation circuits encoding the multivariate trace as output. These circuits are constructed utilizing qMSLA operations, which enact the aforementioned multivariate trace formula. We emphasize that our algorithm's inputs consist solely of state preparation circuits, eschewing harder to synthesize constructs such as Block Encodings. Furthermore, our approach operates independently of the availability of specialized hardware like QRAM, underscoring its versatility and practicality.
- Abstract(参考訳): 本稿では,多変量トレース,すなわち行列生成物のトレースを近似する量子アルゴリズムを提案する。
我々の研究は、行列のスペクトル特性の解明における多変量トレースの広範な活用と、より高速な数値線形代数に量子コンピューティングを活用する最近の進歩によって動機付けられている。
我々のアプローチの中心は、多変量トレース公式の量子回路への直接変換であり、一連の低レベル回路構築操作によって達成される。
この変換を容易にするために,プリミティブ行列代数演算による状態準備回路の効率的な生成に適したフレームワークである 'emph{quantum Matrix States Linear Algebra} (qMSLA) を導入する。
本アルゴリズムは,入力行列を一次入力とし,多変量トレースを出力として符号化した2つの状態準備回路を生成する。
これらの回路は、前述の多変量トレース式を実行するqMSLA演算を用いて構築されている。
提案アルゴリズムの入力は状態準備回路のみで構成されており,ブロック符号化などの構成部品の合成が困難であることを強調する。
さらに,本手法は,QRAMのような専用ハードウェアの可用性とは独立して動作し,その汎用性と実用性を示す。
関連論文リスト
- Double-Logarithmic Depth Block-Encodings of Simple Finite Difference Method's Matrices [0.0]
微分方程式の解法は、古典計算において最も計算コストがかかる問題の1つである。
量子コンピューティングと量子アルゴリズムの分野で最近の進歩にもかかわらず、実用的実現に向けたエンドツーエンドの応用はいまだに達成不可能である。
論文 参考訳(メタデータ) (2024-10-07T17:44:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
本稿では,ACLBM(Adaptive Circuit Learning of Born Machine)という新しいアルゴリズムを提案する。
我々のアルゴリズムは、ターゲット状態に存在する複雑な絡み合いを最もよく捉える2ビットの絡み合いゲートを選択的に統合するように調整されている。
実験結果は、振幅埋め込みによる実世界のデータの符号化における我々のアプローチの習熟度を裏付けるものである。
論文 参考訳(メタデータ) (2023-11-29T16:47:31Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
本稿では,量子プロセッサの固有対称性を利用する量子回路再マッピングアルゴリズムを提案する。
このアルゴリズムは、対称性を用いて探索空間を制約し、全ての位相的に等価な回路マッピングを同定し、ベクトル計算を用いて各マッピングのスコアリングを高速化する。
論文 参考訳(メタデータ) (2023-10-27T10:04:34Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices [4.2389474761558406]
我々は、よく構造化された行列に対して、量子回路がいかに効率的に構築できるかを示す。
スパース戦略におけるこれらの量子回路の実装も提供する。
論文 参考訳(メタデータ) (2022-03-19T03:50:16Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
特に、状態準備および読み出しプロセスのような実装のいくつかのステップは、アルゴリズム自体の複雑さの側面を超越することができる。
本稿では、方程式の線形系と微分方程式の線形系を解くための量子アルゴリズムの完全な実装に関わる複雑性について述べる。
論文 参考訳(メタデータ) (2021-06-23T16:33:33Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z) - Quantum circuit synthesis using Householder transformations [0.0]
世帯変換によるQR分解に基づく回路合成手法を提案する。
最良既存手法の2倍の大きさの量子回路の場合、計算を桁違いに高速化する。
論文 参考訳(メタデータ) (2020-04-16T15:38:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。