論文の概要: Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances
- arxiv url: http://arxiv.org/abs/2405.01378v1
- Date: Thu, 2 May 2024 15:19:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:05:24.809638
- Title: Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances
- Title(参考訳): 準最適最小埋め込みインスタンスによる量子アニールのベンチマーク
- Authors: Valentin Gilbert, Julien Rodriguez, Stephane Louise,
- Abstract要約: 本稿では,D-Wave Quantum Annealersに関連付けられた準最適部分埋め込みマッピングを用いてグラフインスタンスを生成するための新しいプロトコルを確立する。
この手法を用いて、制約のない最適化問題の大規模インスタンス上でQAをベンチマークし、QPUの性能を効率的な古典的解法と比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking Quantum Process Units (QPU) at an application level usually requires considering the whole programming stack of the quantum computer. One critical task is the minor-embedding (resp. transpilation) step, which involves space-time overheads for annealing-based (resp. gate-based) quantum computers. This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers (QA). This set of favorable mappings is used to generate a wide diversity of optimization problem instances. We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers. The benchmark aims to evaluate and quantify the key characteristics of instances that could benefit from the use of a quantum computer. In this context, existing QA seem best suited for unconstrained problems on instances with densities less than $10\%$. For constrained problems, the penalty terms used to encode the hard constraints restrict the performance of QA and suggest that these QPU will be less efficient on these problems of comparable size.
- Abstract(参考訳): アプリケーションレベルでの量子プロセスユニット(QPU)のベンチマークは通常、量子コンピュータのプログラミングスタック全体を考慮する必要がある。
1つの重要なタスクは、アニーリングベースの(ゲートベースの)量子コンピュータの時空オーバーヘッドを含むマイナーエンベディング (resp. transpilation) ステップである。
本稿では,D-Wave Quantum Annealers (QA) に関連付けられた準最適部分埋め込みマッピングを用いてグラフインスタンスを生成するための新しいプロトコルを確立する。
この一連の好意的な写像は、幅広い最適化問題インスタンスを生成するために使われる。
この手法を用いて、制約のない最適化問題の大規模インスタンス上でQAをベンチマークし、QPUの性能を効率的な古典的解法と比較する。
このベンチマークは、量子コンピュータの使用の恩恵を受けるインスタンスの重要な特性を評価し、定量化することを目的としている。
この文脈では、既存のQAは、密度が10\%以下のインスタンスの制約のない問題に最も適しているように思われる。
制約付き問題に対して、ハード制約を符号化するために使用されるペナルティ項は、QAの性能を制限し、これらのQPUが同等の大きさのこれらの問題に対してより効率的でないことを示唆する。
関連論文リスト
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
論文 参考訳(メタデータ) (2024-07-08T22:02:39Z) - Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
本稿では、電気自動車の充電スケジュールを最適化する分野における産業関連ユースケースと、トラック走行経路の最適化に関するユースケースについて考察する。
我々の中心的なコントリビューションは、IBMのゲートベース量子コンピュータの異なるプロセッサとD-Waveの量子アニール上で実行されるこれらのユースケースから導かれる系統的な一連の例である。
論文 参考訳(メタデータ) (2024-04-10T17:08:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - QPack: Quantum Approximate Optimization Algorithms as universal
benchmark for quantum computers [1.1602089225841632]
ノイズ中間スケール量子(NISQ)コンピュータの普遍的ベンチマークであるQPackを提案する。
QPackは、量子コンピュータが解決できる最大問題サイズ、必要なランタイム、および達成された精度を評価する。
論文 参考訳(メタデータ) (2021-03-31T16:20:51Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
我々はAtos Q-score (TM)と呼ばれる新しいベンチマークを導入する。
Qスコアは、MaxCut最適化問題を解決するために効果的に使用できる量子ビットの最大数を測定する。
量子ハードウェアのQスコアを簡単に計算できるQスコアのオープンソース実装を提供する。
論文 参考訳(メタデータ) (2021-02-25T16:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。