論文の概要: Multiscale Causal Learning
- arxiv url: http://arxiv.org/abs/2405.02325v2
- Date: Mon, 3 Jun 2024 14:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 14:58:30.776115
- Title: Multiscale Causal Learning
- Title(参考訳): マルチスケール因果学習
- Authors: Michael Timothy Bennett,
- Abstract要約: バイオインテリジェンスは人工知能(AI)よりもサンプリング効率が高い
弱政治最適化(WPO)により、より弱い政策を高レベルで合成できることを示す。
これは生物学、機械学習、AI安全性、哲学に影響を及ぼす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological intelligence is more sample-efficient than artificial intelligence (AI), learning from fewer examples. Here we answer why. Given data, there can be many policies which seem "correct" because they perfectly fit the data. However, only one correct policy could have actually caused the data. Sample-efficiency requires a means of discerning which. Previous work showed sample efficiency is maximised by weak-policy-optimisation (WPO); preferring policies that more weakly constrain what is considered to be correct, given finite resources. Biology's sample-efficiency demonstrates it is better at WPO. To understand how, we formalise the "multiscale-competency-architecture" (MCA) observed in biological systems, as a sequence of nested "agentic-abstraction-layers". We show that WPO at low levels enables synthesis of weaker policies at high. We call this "multiscale-causal-learning", and argue this is how we might construct more scale-able, sample-efficient and reliable AI. Furthermore, a sufficiently weak policy at low levels is a precondition of collective policy at higher levels. The higher level "identity" of the collective is lost if lower levels use an insufficiently weak policy (e.g. cells may become isolated from the collective informational structure and revert to primitive behaviour). This has implications for biology, machine learning, AI-safety, and philosophy.
- Abstract(参考訳): 生物学的知能は、より少ない例から学ぶ人工知能(AI)よりもサンプリング効率が高い。
ここでは理由を答える。
データを考えると、データに完全に適合しているため、多くのポリシーが“正しい”ように思える。
しかし、実際にデータを発生させたのは、正しいポリシーの1つだけだった。
サンプル効率は、どれを識別する手段を必要とする。
以前の研究では、サンプル効率は弱政治最適化(WPO)によって最大化され、有限資源から見て、正しいと考えられるものをより弱く制限する政策が好まれていた。
生物学のサンプル効率は、WPOが優れていることを示している。
そこで我々は,生物系で観察される「マルチスケール・コンピテンシー・アーキテクチャ(MCA)」を,ネストした「老化促進層」の配列として定式化する。
低レベルのWPOは、より弱いポリシーを高いレベルで合成できることを示す。
私たちはこれを"マルチスケール因果学習(multiscale-causal-learning)"と呼び、これを、よりスケール可能でサンプル効率のよい、信頼性の高いAIを構築する方法として論じています。
さらに、低レベルの十分弱い政策は、より高いレベルの集団政策の前提条件である。
集団の「アイデンティティ」の上位レベルは、低レベルが不十分に弱いポリシーを使用すると失われる(例えば、g細胞は集団の情報構造から分離され、原始的な行動に戻る)。
これは生物学、機械学習、AI安全性、哲学に影響を及ぼす。
関連論文リスト
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
人工知能を作ることの追求は、私たち自身の知性を理解することへの長年の関心を反映している。
最近のAIの進歩は約束を守るが、特異なアプローチはしばしば知性の本質を捉えるのに不足する。
本稿では,生物計算の基本原理が真にインテリジェントなシステムの設計をいかに導くかを検討する。
論文 参考訳(メタデータ) (2024-11-22T02:55:39Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - There's Plenty of Room Right Here: Biological Systems as Evolved,
Overloaded, Multi-scale Machines [0.0]
我々は、カテゴリ間のハードバウンダリを放棄し、オブザーバに依存した実践的な視点を採用することによって、有用な道が先延ばしされることを論じる。
バイオメディカルまたはバイオエンジニアリングの目的のために生体システムを再形成するためには、複数のスケールでそれらの機能の予測と制御が必要である。
我々は,メソスケールイベントの理解を改善するために,進化・設計されたシステムによって実行される計算のためのオブザーバ中心のフレームワークを論じる。
論文 参考訳(メタデータ) (2022-12-20T22:26:40Z) - Neuromorphic Computing and Sensing in Space [69.34740063574921]
神経型コンピュータチップは、生物学的脳の構造を模倣するように設計されている。
ニューロモルフィックデバイスの低消費電力とエネルギー効率に重点を置くことは、宇宙応用には最適である。
論文 参考訳(メタデータ) (2022-12-10T07:46:29Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
我々は、AI(Artificial General Intelligence, AGI)の検索は、人間レベルの知能よりもはるかに低いレベルから始まるべきだと論じる。
我々の仮説は、エージェントが環境の中で行動するとき、学習は感覚フィードバックによって起こるというものである。
環境反応から学習する生物学的にインスパイアされた人工ニューラルネットワークを進化させる手法を評価する。
論文 参考訳(メタデータ) (2022-07-27T15:30:50Z) - From Biological Synapses to Intelligent Robots [0.0]
ヘビアンシナプス学習は、機械学習とインテリジェンスのための機能的関連モデルとして議論されている。
適応的な学習と制御の可能性を、監督なしで先導する。
ここで収集された洞察は、インテリジェントなロボティクスとセンサーシステムの選択ソリューションとして、Hebbianモデルに向けられている。
論文 参考訳(メタデータ) (2022-02-25T12:39:22Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
共生自律システム(SAS)は、自律的な集団知能を示す高度なインテリジェントおよび認知システムです。
この研究は、知性、認知、コンピュータ、システム科学の最新の進歩に根ざしたSASの理論的枠組みを示す。
論文 参考訳(メタデータ) (2021-02-11T05:44:25Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Synergetic Learning Systems: Concept, Architecture, and Algorithms [4.623783824925363]
総合学習システム(Synergetic Learning Systems)」という人工知能システムについて述べる。
本システムは,協調的・競争的な相乗学習を通じて,与えられた環境におけるインテリジェントな情報処理と意思決定を実現する。
設計基準の下では,提案システムは長期的にの共進化を通じて,最終的には汎用的な人工知能を実現することが期待されている。
論文 参考訳(メタデータ) (2020-05-31T06:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。