論文の概要: Predicting the usability of mobile applications using AI tools: the rise of large user interface models, opportunities, and challenges
- arxiv url: http://arxiv.org/abs/2405.03716v1
- Date: Sun, 5 May 2024 09:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:34:09.541302
- Title: Predicting the usability of mobile applications using AI tools: the rise of large user interface models, opportunities, and challenges
- Title(参考訳): AIツールによるモバイルアプリケーションのユーザビリティ予測 - 大規模ユーザインターフェースモデルの台頭,チャンス,課題
- Authors: Abdallah Namoun, Ahmed Alrehaili, Zaib Un Nisa, Hani Almoamari, Ali Tufail,
- Abstract要約: 本稿では,モバイルアプリケーションにおけるユーザインタフェースの生成とユーザビリティの予測を可能にする,いわゆるLUIM(Big User Interface Model)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article proposes the so-called large user interface models (LUIMs) to enable the generation of user interfaces and prediction of usability using artificial intelligence in the context of mobile applications.
- Abstract(参考訳): 本稿では,モバイルアプリケーションにおけるユーザインタフェースの生成とユーザビリティの予測を可能にする,いわゆるLUIM(Big User Interface Model)を提案する。
関連論文リスト
- Human-AI Interaction in Industrial Robotics: Design and Empirical Evaluation of a User Interface for Explainable AI-Based Robot Program Optimization [5.537321488131869]
本稿では,最先端の深層学習型ロボットプログラムのための説明ユーザインタフェース(XUI)を提案する。
XUIは、スキルレベルによって異なるユーザエクスペリエンスを持つ、ナイーブなユーザとエキスパートなユーザの両方を提供します。
論文 参考訳(メタデータ) (2024-04-30T08:20:31Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - An Interactive Human-Machine Learning Interface for Collecting and Learning from Complex Annotations [45.23526921041318]
我々は,従来のラベルの制約にヒトのアノテータが適応するという期待を緩和するために,監視情報が収集される形で,さらなる柔軟性を実現することを目的としている。
そこで本研究では,データセットのアノテーションとして標準バイナリラベルを補完するために,ヒューマンアノテータによる実例の活用を可能にする,バイナリ分類タスクのためのヒューマンマシン学習インタフェースを提案する。
論文 参考訳(メタデータ) (2024-03-28T11:57:06Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - User Friendly and Adaptable Discriminative AI: Using the Lessons from
the Success of LLMs and Image Generation Models [0.6926105253992517]
我々は、ユーザが差別的なモデルで作業できる新しいシステムアーキテクチャを開発した。
我々のアプローチは、信頼、ユーザーフレンドリさ、そしてこれらの多目的だが伝統的な予測モデルの適応性を改善することに影響を及ぼす。
論文 参考訳(メタデータ) (2023-12-11T20:37:58Z) - MAPLE: Mobile App Prediction Leveraging Large Language Model Embeddings [10.15489740838546]
本研究では,大規模言語モデル埋め込み(MAPLE)を活用したモバイルアプリケーション予測モデルを提案する。
MAPLEは、LLM(Large Language Models)を採用し、これらの課題を克服するためにアプリの類似性をインストールしている。
2つの実世界のデータセットのテストでは、MAPLEは標準およびコールドスタートシナリオの両方で、現代のモデルを上回っている。
論文 参考訳(メタデータ) (2023-09-15T13:15:54Z) - When Large Language Models Meet Personalization: Perspectives of
Challenges and Opportunities [60.5609416496429]
大規模言語モデルの能力は劇的に改善されている。
このような大きな飛躍的なAI能力は、パーソナライゼーションの実施方法のパターンを変えるだろう。
大規模言語モデルを汎用インターフェースとして活用することにより、パーソナライズシステムはユーザ要求を計画にコンパイルすることができる。
論文 参考訳(メタデータ) (2023-07-31T02:48:56Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Towards Tool-Support for Interactive-Machine Learning Applications in
the Android Ecosystem [0.0]
機械学習モデルの実装、テスト、デプロイの課題に対処するには、AIエンジニアのためのツールサポートが必要であると考えています。
本稿では,AI技術者へのインタビューや,スマートウォッチとスマートフォンを用いた対話型機械学習ユースケースの実験を含む,一連の質問の予備的結果を示す。
論文 参考訳(メタデータ) (2021-03-27T09:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。