論文の概要: Give and Take: An End-To-End Investigation of Giveaway Scam Conversion Rates
- arxiv url: http://arxiv.org/abs/2405.09757v1
- Date: Thu, 16 May 2024 01:50:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:40:20.230255
- Title: Give and Take: An End-To-End Investigation of Giveaway Scam Conversion Rates
- Title(参考訳): Give and Take: Giveaway Scam Conversion Ratesのエンドツーエンド調査
- Authors: Enze Liu, George Kappos, Eric Mugnier, Luca Invernizzi, Stefan Savage, David Tao, Kurt Thomas, Geoffrey M. Voelker, Sarah Meiklejohn,
- Abstract要約: 我々は暗号通貨の支払い詐欺が大規模にどのように動作するかを研究する。
1000件の詐欺ツイートが1件、10万件のライブストリームビューが4件、被害者は1件だ。
スキャマーズはわずか数百人の犠牲者から460万ドル近くを回収した。
- 参考スコア(独自算出の注目度): 8.24724427283375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scams -- fraudulent schemes designed to swindle money from victims -- have existed for as long as recorded history. However, the Internet's combination of low communication cost, global reach, and functional anonymity has allowed scam volumes to reach new heights. Designing effective interventions requires first understanding the context: how scammers reach potential victims, the earnings they make, and any potential bottlenecks for durable interventions. In this short paper, we focus on these questions in the context of cryptocurrency giveaway scams, where victims are tricked into irreversibly transferring funds to scammers under the pretense of even greater returns. Combining data from Twitter, YouTube and Twitch livestreams, landing pages, and cryptocurrency blockchains, we measure how giveaway scams operate at scale. We find that 1 in 1000 scam tweets, and 4 in 100,000 livestream views, net a victim, and that scammers managed to extract nearly \$4.62 million from just hundreds of victims during our measurement window.
- Abstract(参考訳): 被害者からお金を流す詐欺は、記録に残る限り存在してきた。
しかし、インターネットの低通信コスト、グローバルリーチ、機能匿名の組み合わせにより、詐欺のボリュームは新たな高さに達することができた。
効果的な介入を設計するには、最初にコンテキストを理解する必要がある。
本稿では、暗号通貨の配当詐欺の文脈において、これらの疑問に焦点を合わせ、被害者は、さらに大きなリターンを迫られた詐欺師に、不可逆的に資金を振りかざすように騙される。
Twitter、YouTube、Twitchのライブストリーム、ランディングページ、およびブロックチェーンからのデータを組み合わせることで、大規模な盗難詐欺がどのように動作するかを測定する。
1000件の詐欺ツイートが1件、ライブストリームビューが10万件、ネットが1件、詐欺師がたった数百人の被害者から4億6200万ドル(約460億円)近くを抽出したことがわかりました。
関連論文リスト
- Conning the Crypto Conman: End-to-End Analysis of Cryptocurrency-based Technical Support Scams [19.802676243375615]
暗号通貨ベースの技術サポート詐欺という詐欺の流行が高まっている。
この種の詐欺を分析するために,HoneyTweetという分析装置を提案する。
論文 参考訳(メタデータ) (2024-01-18T09:31:45Z) - The Devil Behind the Mirror: Tracking the Campaigns of Cryptocurrency Abuses on the Dark Web [39.96427593096699]
不正なブロックチェーンアドレスが1,189件ある2,564の違法サイトを特定します。
私たちの調査は、ダークウェブにおける不正な活動には強い相関関係があることを示唆しており、新たな不正なブロックチェーンアドレスと玉ねぎを識別するためのガイドになります。
論文 参考訳(メタデータ) (2024-01-09T16:35:25Z) - The Conspiracy Money Machine: Uncovering Telegram's Conspiracy Channels and their Profit Model [50.80312055220701]
陰謀のチャネルは、17,000以上のチャンネルからなる4つの異なるコミュニティにまとめることができる。
陰謀論者はeコマースプラットフォームを利用して、疑わしい商品を販売したり、アフィリエイトリンクを通じて利益を上げたりする。
この事業には何十万もの寄付者が参加し、約6600万ドル(約6億6000万円)の転売を生んでいると結論付けている。
論文 参考訳(メタデータ) (2023-10-24T16:25:52Z) - Towards Understanding and Characterizing the Arbitrage Bot Scam In the Wild [4.129433926074777]
本稿では,オンラインソーシャルネットワーク上に散在する暗号通貨詐欺「arbitrage bot」の包括的分析を行った。
この詐欺は、分散取引所(DEX)の仲裁を中心に展開され、被害者を誘致していわゆる「ボット契約」を実行させ、そこから資金を盗もうとする。
大規模な詐欺を収集するために,CryptoScamHunterという完全自動詐欺検知システムを開発した。
論文 参考訳(メタデータ) (2023-10-18T20:13:17Z) - An Attention-based Long Short-Term Memory Framework for Detection of
Bitcoin Scams [2.0720586052989978]
Bitcoinは、サイバー詐欺に関わる最も一般的な暗号通貨だ。
本稿では、トランザクションがPonziスキームや他のサイバー詐欺に関与しているかどうかを決定するために、マルチクラス分類問題を検討する。
論文 参考訳(メタデータ) (2022-10-26T01:20:21Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and
Conspiracy Movements [67.39353554498636]
我々は35,382の異なるチャンネルと130,000,000以上のメッセージを収集して,Telegramの大規模解析を行う。
カードなどのダークウェブのプライバシー保護サービスにも、悪名高い活動がいくつかある。
疑似チャネルを86%の精度で識別できる機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-26T14:53:31Z) - Recent trends in Social Engineering Scams and Case study of Gift Card
Scam [4.345672405192058]
社会工学詐欺(SES)は、人類による電気通信の導入以来、存在してきた。
世界中の無実の人々をターゲットにした、様々なソーシャルエンジニアリング詐欺の最近の動向。
各種企業顧客を対象としたリアルタイムギフトカード詐欺の事例研究
論文 参考訳(メタデータ) (2021-10-13T04:17:02Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
本報告では,ポンプ群とダンプ群に関する3症例について報告する。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Charting the Landscape of Online Cryptocurrency Manipulation [6.115604209763508]
オンライン暗号通貨の展望を、複数のプラットフォームでグラフ化しています。
私たちは、Twitter、Telegram、Discordで約700万人のユーザーが発行した5000万以上のメッセージからなる大規模なデータセットを収集しました。
論文 参考訳(メタデータ) (2020-01-28T12:19:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。