論文の概要: The Narrow Depth and Breadth of Corporate Responsible AI Research
- arxiv url: http://arxiv.org/abs/2405.12193v1
- Date: Mon, 20 May 2024 17:26:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 12:35:30.402402
- Title: The Narrow Depth and Breadth of Corporate Responsible AI Research
- Title(参考訳): 企業責任AI研究の幅と幅
- Authors: Nur Ahmed, Amit Das, Kirsten Martin, Kawshik Banerjee,
- Abstract要約: 私たちは、AI企業の大多数が、この重要なAIのサブフィールドにおいて、限られた、あるいは全く関与していないことを示している。
主要なAI企業は、従来のAI研究に比べて、責任あるAI研究のアウトプットが著しく低い。
当社の結果は、業界が責任あるAI研究を公然と行う必要性を浮き彫りにしたものだ。
- 参考スコア(独自算出の注目度): 3.364518262921329
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The transformative potential of AI presents remarkable opportunities, but also significant risks, underscoring the importance of responsible AI development and deployment. Despite a growing emphasis on this area, there is limited understanding of industry's engagement in responsible AI research, i.e., the critical examination of AI's ethical, social, and legal dimensions. To address this gap, we analyzed over 6 million peer-reviewed articles and 32 million patent citations using multiple methods across five distinct datasets to quantify industry's engagement. Our findings reveal that the majority of AI firms show limited or no engagement in this critical subfield of AI. We show a stark disparity between industry's dominant presence in conventional AI research and its limited engagement in responsible AI. Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research and the contributions of leading academic institutions. Our linguistic analysis documents a narrower scope of responsible AI research within industry, with a lack of diversity in key topics addressed. Our large-scale patent citation analysis uncovers a pronounced disconnect between responsible AI research and the commercialization of AI technologies, suggesting that industry patents rarely build upon insights generated by the responsible AI literature. This gap highlights the potential for AI development to diverge from a socially optimal path, risking unintended consequences due to insufficient consideration of ethical and societal implications. Our results highlight the urgent need for industry to publicly engage in responsible AI research to absorb academic knowledge, cultivate public trust, and proactively mitigate AI-induced societal harms.
- Abstract(参考訳): AIの変革的なポテンシャルは、驚くべき機会だけでなく、重大なリスクをもたらし、責任あるAI開発とデプロイメントの重要性を強調している。
この分野に重点を置いているにもかかわらず、AI研究における産業の関与、すなわちAIの倫理的、社会的、法的側面に対する批判的な評価について、限定的な理解がある。
このギャップに対処するため、産業のエンゲージメントを定量化するために、5つの異なるデータセットにまたがる複数の方法を用いて、600万以上のピアレビュー記事と3200万の特許引用を分析しました。
我々の研究結果によると、AI企業の大多数は、この重要なAI分野への関与が限られているか、全くないことがわかった。
我々は、従来のAI研究における業界の支配的な存在と、その責任あるAIへの関与が限定的であることの相違を示す。
先進的なAI企業は、従来のAI研究や主要な学術機関の貢献と比べて、責任あるAI研究の成果が著しく低い。
私たちの言語分析では、業界におけるAI研究の責任範囲が狭くなり、対処される主要なトピックの多様性が欠如しています。
当社の大規模特許引用分析は、責任あるAI研究とAI技術の商業化との明確な断絶を明らかにし、業界特許が責任あるAI文献によって生成された洞察に基づいて構築されることは滅多にないことを示唆している。
このギャップは、AI開発が社会的に最適な経路から分岐する可能性を強調し、倫理的および社会的意味の考慮が不十分なために意図しない結果のリスクを負う。
我々の結果は、学術知識を吸収し、公的な信頼を育み、AIが引き起こす社会的害を積極的に軽減するために、業界が責任あるAI研究を公然と行う必要性を強調している。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
Particip-AIは、現在および将来のAIユースケースと、非専門家から損害と利益を収集するフレームワークである。
人口統計学的に多様な参加者295名から回答を得た。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
この記事では、経済的、倫理的、社会的、セキュリティとプライバシ、仕事のずれといった、AIの影響を強調している。
偏見、セキュリティ、プライバシー侵害などの問題を含む、AI開発に関する倫理的懸念について論じている。
この記事は、社会全体にAIが及ぼす影響の認識と理解を促進するために、公的なエンゲージメントと教育の重要性を強調して締めくくっている。
論文 参考訳(メタデータ) (2023-12-22T00:41:21Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - Trustworthy, responsible, ethical AI in manufacturing and supply chains:
synthesis and emerging research questions [59.34177693293227]
製造の文脈において、責任、倫理、信頼できるAIの適用性について検討する。
次に、機械学習ライフサイクルのより広範な適応を使用して、実証的な例を用いて、各ステップが与えられたAIの信頼性に関する懸念にどのように影響するかを議論します。
論文 参考訳(メタデータ) (2023-05-19T10:43:06Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
我々は、科学研究におけるAIの直接的な利用とAIの潜在的利益の両方を見積もる。
研究におけるAIの利用は科学に広く浸透しており、特に2015年以来急速に成長している。
我々の分析は、AIが多くの科学分野に利益をもたらす可能性があることを示しているが、AI教育とその研究応用の間には顕著な断絶がある。
論文 参考訳(メタデータ) (2023-04-17T08:08:50Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
本稿では、感情認識型AIの倫理的結果(道徳的・倫理的結果)を評価するためのガイドラインを提案する。
我々は,AI開発者による倫理的責任を分離し,そのようなAIをデプロイするエンティティをビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビ
最終的には研究者、開発者、オペレーター、規制当局、法執行機関への勧告で終わります。
論文 参考訳(メタデータ) (2021-07-29T03:57:53Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。