論文の概要: Data Assimilation with Machine Learning Surrogate Models: A Case Study with FourCastNet
- arxiv url: http://arxiv.org/abs/2405.13180v2
- Date: Mon, 10 Feb 2025 23:12:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:03:00.121871
- Title: Data Assimilation with Machine Learning Surrogate Models: A Case Study with FourCastNet
- Title(参考訳): 機械学習サロゲートモデルによるデータ同化: FourCastNet を用いたケーススタディ
- Authors: Melissa Adrian, Daniel Sanz-Alonso, Rebecca Willett,
- Abstract要約: 部分的・雑音的な観測を補足した機械学習サロゲートを用いたオンライン天気予報について検討した。
サロゲートの長期間の不安定性と観測の空間性にもかかわらず、フィルタリング推定は長期間の地平線において正確である。
- 参考スコア(独自算出の注目度): 10.773673764125439
- License:
- Abstract: Modern data-driven surrogate models for weather forecasting provide accurate short-term predictions but inaccurate and nonphysical long-term forecasts. This paper investigates online weather prediction using machine learning surrogates supplemented with partial and noisy observations. We empirically demonstrate and theoretically justify that, despite the long-time instability of the surrogates and the sparsity of the observations, filtering estimates can remain accurate in the long-time horizon. As a case study, we integrate FourCastNet, a weather surrogate model, within a variational data assimilation framework using partial, noisy ERA5 data. Our results show that filtering estimates remain accurate over a year-long assimilation window and provide effective initial conditions for forecasting tasks, including extreme event prediction.
- Abstract(参考訳): 気象予報のための現代のデータ駆動サロゲートモデルは、正確な短期予測を提供するが、不正確で非物理的長期予測を提供する。
本稿では,部分的・雑音的な観測を補足した機械学習サロゲートを用いたオンライン天気予報について検討する。
我々は、サロゲートの長期間の不安定さと観測の空間性にもかかわらず、フィルタリング推定が長時間の地平線で正確であることを実証的に証明し、理論的に正当化する。
ケーススタディとして、気象代理モデルであるFourCastNetを、部分的なノイズの多いERA5データを用いた変動データ同化フレームワークに統合する。
その結果,フィルタ推定は1年間の同化ウィンドウ上で精度が保たれており,極端な事象予測を含むタスクの予測に有効な初期条件が得られた。
関連論文リスト
- CoDiCast: Conditional Diffusion Model for Weather Prediction with Uncertainty Quantification [25.325450602084484]
CoDiCastは、正確なグローバル気象予測を生成する条件拡散モデルである。
80GBメモリのコモディティA100マシンでは、3日間のグローバルな天気予報を5変数以上で6時間歩数5.625円で生成できる。
論文 参考訳(メタデータ) (2024-09-09T18:18:47Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Long-Term Typhoon Trajectory Prediction: A Physics-Conditioned Approach
Without Reanalysis Data [18.321586950937647]
本稿では,リアルタイム統一モデル(UM)データを活用する手法を提案する。
本モデルでは,6時間間隔で72時間前処理を行い,最新データ駆動モデルと数値天気予報モデルとを比較検討した。
論文 参考訳(メタデータ) (2024-01-28T18:28:33Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - W-MAE: Pre-trained weather model with masked autoencoder for
multi-variable weather forecasting [7.610811907813171]
天気予報のための事前学習を行うMasked AutoEncoderを用いた気象モデルを提案する。
W-MAEは、気象変数内の空間的相関を再構成するために、自己教師付きで事前訓練される。
時間スケールでは、事前訓練されたW-MAEを微調整し、気象変数の将来状態を予測する。
論文 参考訳(メタデータ) (2023-04-18T06:25:11Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。