論文の概要: Explainable machine learning multi-label classification of Spanish legal judgements
- arxiv url: http://arxiv.org/abs/2405.17610v1
- Date: Mon, 27 May 2024 19:16:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:21:23.735199
- Title: Explainable machine learning multi-label classification of Spanish legal judgements
- Title(参考訳): 説明可能な機械学習によるスペインの法的判断の多ラベル分類
- Authors: Francisco de Arriba-Pérez, Silvia García-Méndez, Francisco J. González-Castaño, Jaime González-González,
- Abstract要約: 本稿では,判断文(文)の多ラベル分類に機械学習を適用し,説明目的の視覚的・自然言語的記述を行うハイブリッドシステムを提案する。
我々のソリューションは、法の専門家によって注釈付けされたラベル付きデータセット上で85%以上のマイクロ精度を達成する。
- 参考スコア(独自算出の注目度): 6.817247544942709
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence techniques such as Machine Learning (ML) have not been exploited to their maximum potential in the legal domain. This has been partially due to the insufficient explanations they provided about their decisions. Automatic expert systems with explanatory capabilities can be specially useful when legal practitioners search jurisprudence to gather contextual knowledge for their cases. Therefore, we propose a hybrid system that applies ML for multi-label classification of judgements (sentences) and visual and natural language descriptions for explanation purposes, boosted by Natural Language Processing techniques and deep legal reasoning to identify the entities, such as the parties, involved. We are not aware of any prior work on automatic multi-label classification of legal judgements also providing natural language explanations to the end-users with comparable overall quality. Our solution achieves over 85 % micro precision on a labelled data set annotated by legal experts. This endorses its interest to relieve human experts from monotonous labour-intensive legal classification tasks.
- Abstract(参考訳): 機械学習(ML)のような人工知能技術は、法的領域における最大の可能性のために利用されていない。
これは部分的には、彼らの決定に関する説明が不十分なためである。
説明能力を持つ自動専門家システムは、法律実務者が判例の文脈的知識を収集するために法曹を検索する際に特に有用である。
そこで本稿では,自然言語処理技術によって強化された多言語判定(文)と視覚・自然言語記述の多言語分類にMLを適用したハイブリッドシステムを提案する。
法律判断の自動多ラベル分類に関する以前の作業や、エンドユーザーに対して、全体的な品質に匹敵する自然言語の説明を提供するものについては、まだ分かっていません。
我々のソリューションは、法の専門家によって注釈付けされたラベル付きデータセット上で85%以上のマイクロ精度を達成する。
このことは、人間の専門家が単調な労働集約的な法的な分類タスクから解放することへの関心を裏付けている。
関連論文リスト
- Judgement Citation Retrieval using Contextual Similarity [0.0]
本稿では,自然言語処理(NLP)と機械学習技術を組み合わせて,訴訟記述の組織化と活用を促進する手法を提案する。
提案手法は,教師なしクラスタリングと教師付き引用検索の2つの主要な目的に対処する。
我々の手法は90.9%という驚くべき精度を達成した。
論文 参考訳(メタデータ) (2024-05-28T04:22:28Z) - Automatic explanation of the classification of Spanish legal judgments in jurisdiction-dependent law categories with tree estimators [6.354358255072839]
この研究は、自然言語処理(NLP)と機械学習(ML)を組み合わせて、法的テキストを説明可能な方法で分類するシステムに寄与する。
木構造決定経路の閾値分岐値と決定に関わる特徴を解析する。
法の専門家は我々の解決策を検証しており、この知識は「ループのエキスパート」辞書として説明のプロセスにも組み込まれている。
論文 参考訳(メタデータ) (2024-03-30T17:59:43Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - The Ethics of Automating Legal Actors [58.81546227716182]
我々は、裁判官の役割の自動化は、特に一般的な法体系において、難しい倫理的課題を提起すると主張している。
我々の主張は、単に法律を適用するのではなく、法律を積極的に形成する際の裁判官の社会的役割から従う。
モデルが人間レベルの能力を達成できたとしても、法的プロセスの自動化に固有の倫理的懸念は残るだろう。
論文 参考訳(メタデータ) (2023-12-01T13:48:46Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - AUTOLEX: An Automatic Framework for Linguistic Exploration [93.89709486642666]
本稿では言語学者による言語現象の簡潔な記述の発見と抽出を容易にするための自動フレームワークを提案する。
具体的には、この枠組みを用いて、形態的一致、ケースマーキング、単語順序の3つの現象について記述を抽出する。
本研究では,言語専門家の助けを借りて記述を評価し,人間の評価が不可能な場合に自動評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T20:37:30Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - A Dataset for Statutory Reasoning in Tax Law Entailment and Question
Answering [37.66486350122862]
本稿では,法定推論における自然言語理解手法の性能について検討する。
我々は、法的ドメインのテキストコーパスとともにデータセットを導入する。
タスクを完全に解くように設計された手作りPrologベースのシステムと対比する。
論文 参考訳(メタデータ) (2020-05-11T16:54:42Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
LJP(Lawal Judgment Prediction)は、その事実を記述したテキストが与えられた場合、訴訟の判断結果を自動的に予測するタスクである。
LJP の課題を解決するために,エンド・ツー・エンドのモデル LADAN を提案する。
論文 参考訳(メタデータ) (2020-04-06T11:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。