Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
- URL: http://arxiv.org/abs/2405.17642v1
- Date: Mon, 27 May 2024 20:32:09 GMT
- Title: Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
- Authors: Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, Maciej Zięba,
- Abstract summary: Counterfactual Explanations (CFs) have emerged as a promising technique within Explainable AI (xAI)
We introduce a novel unified approach for generating Local, Group-wise, and Global Counterfactual Explanations for differentiable classification models.
Our work significantly advances the interpretability and accountability of AI models, marking a step forward in the pursuit of transparent AI.
- Score: 2.675793767640172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Growing regulatory and societal pressures demand increased transparency in AI, particularly in understanding the decisions made by complex machine learning models. Counterfactual Explanations (CFs) have emerged as a promising technique within Explainable AI (xAI), offering insights into individual model predictions. However, to understand the systemic biases and disparate impacts of AI models, it is crucial to move beyond local CFs and embrace global explanations, which offer a~holistic view across diverse scenarios and populations. Unfortunately, generating Global Counterfactual Explanations (GCEs) faces challenges in computational complexity, defining the scope of "global," and ensuring the explanations are both globally representative and locally plausible. We introduce a novel unified approach for generating Local, Group-wise, and Global Counterfactual Explanations for differentiable classification models via gradient-based optimization to address these challenges. This framework aims to bridge the gap between individual and systemic insights, enabling a deeper understanding of model decisions and their potential impact on diverse populations. Our approach further innovates by incorporating a probabilistic plausibility criterion, enhancing actionability and trustworthiness. By offering a cohesive solution to the optimization and plausibility challenges in GCEs, our work significantly advances the interpretability and accountability of AI models, marking a step forward in the pursuit of transparent AI.
Related papers
- Interpretable Concept-based Deep Learning Framework for Multimodal Human Behavior Modeling [5.954573238057435]
EU General Data Protection Regulation requires any high-risk AI systems to be sufficiently interpretable.
Existing explainable methods often compromise between interpretability and performance.
We propose a novel and generalizable framework, namely the Attention-Guided Concept Model (AGCM)
AGCM provides learnable conceptual explanations by identifying what concepts that lead to the predictions and where they are observed.
arXiv Detail & Related papers (2025-02-14T13:15:21Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
This paper introduces a novel approach to model alignment through weak-to-strong generalization in the context of language models.
Our results suggest that this facilitation-based approach not only enhances model performance but also provides insights into the nature of model alignment.
arXiv Detail & Related papers (2024-09-11T15:16:25Z) - Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations.
We first define a novel, logic-based formalism to represent explanatory information shared between humans and machines.
We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated.
arXiv Detail & Related papers (2024-08-13T13:11:56Z) - Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective [1.0420394952839245]
This paper explores the seamless integration of Generative AI (GenAI) and Evolutionary Algorithms (EAs)
Focusing on the transformative role of Large Language Models (LLMs), our study investigates the potential of LLM-Assisted Inference to automate and enhance decision-making processes.
arXiv Detail & Related papers (2024-05-12T08:22:53Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.