論文の概要: Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification
- arxiv url: http://arxiv.org/abs/2406.00954v1
- Date: Mon, 3 Jun 2024 03:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 02:37:18.766893
- Title: Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification
- Title(参考訳): アノテーションガイドラインに基づく知識強化:教育用テキスト分類のための大規模言語モデルの実現を目指して
- Authors: Shiqi Liu, Sannyuya Liu, Lele Sha, Zijie Zeng, Dragan Gasevic, Zhi Liu,
- Abstract要約: 大規模言語モデル(LLM)を改善するためのガイドラインベース知識拡張(AGKA)アプローチを提案する。
AGKAはGPT 4.0を使用して、アノテーションガイドラインからラベル定義の知識を取得し、ランダムアンダーサンプラーを適用していくつかの典型的な例を選択する。
実験の結果、AGKAは非微調整LDM(特にGPT 4.0とLlama 3 70B)を増強できることが示された。
- 参考スコア(独自算出の注目度): 11.69740323250258
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
- Abstract(参考訳): 各種機械学習アプローチは、学習エンゲージメントの指標、すなわち学習エンゲージメント分類(LEC)を識別する教育テキストの自動分類において、大きな人気を得ている。
LECは、人間の学習プロセスに関する包括的な洞察を提供し、自然言語処理(NLP)、学習分析、教育データマイニングなど、さまざまな研究コミュニティから大きな関心を集めている。
近年,ChatGPT などの大規模言語モデル (LLM) は,様々な NLP タスクにおいて顕著な性能を示した。
しかし, LECタスクにおける総合的な評価と改善アプローチについては, 十分には検討されていない。
本研究では,アノテーションガイドラインに基づく知識向上手法(AGKA)を提案する。
AGKAはGPT 4.0を使用して、アノテーションガイドラインからラベル定義の知識を取得し、ランダムアンダーサンプラーを適用していくつかの典型的な例を選択する。
その後、行動分類(クエストと緊急度)、感情分類(バイナリと認識の感情)、認知分類(オピニオンと認知の存在)の6つのLECデータセットを含むLECの体系的評価ベンチマークを行う。
実験の結果、AGKAは非微調整LDM(特にGPT 4.0とLlama 3 70B)を増強できることが示された。
AGKAによるGPT 4.0は、単純なバイナリ分類データセット上でBERTやRoBERTaのようなフルショットの微調整モデルよりも優れている。
しかし、GPT 4.0は複雑な意味情報の深い理解を必要とするマルチクラスタスクで遅れている。
特に、Llama 370B と AGKA はオープンソース LLM をベースとした有望な組み合わせである。
加えて、LLMは、マルチクラスの分類において、類似した名前のラベルを区別するのに苦労している。
関連論文リスト
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
論文 参考訳(メタデータ) (2024-11-22T12:37:41Z) - Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process [45.632012199451275]
In-context Learning(ICL)は、インプット・アウトプット・ペアを通じてマッピングを学習する、数発の学習パラダイムである。
既存の作業は大規模にラベル付けされたサポートセットに大きく依存しているため、現実的なシナリオでは必ずしも実現できない。
言語モデルに基づく決定点プロセス(LM-DPP)を導入し、最適選択のための未ラベルインスタンスの不確かさと多様性を同時に検討する。
論文 参考訳(メタデータ) (2024-08-04T18:08:15Z) - Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models [33.488331159912136]
インストラクションチューニングは、大きな言語モデル(LLM)と人間の嗜好の整合において重要な役割を果たす。
自然言語処理(NLP)とディープラーニングの分野において,データアセスメントと選択手法が提案されている。
本稿では,データアセスメントと選択に関する既存の文献を総合的にレビューし,特にLLMの命令チューニングについて述べる。
論文 参考訳(メタデータ) (2024-08-04T16:50:07Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - Data-free Multi-label Image Recognition via LLM-powered Prompt Tuning [23.671999163027284]
本稿では,学習データを持たないマルチラベル画像認識のための新しいフレームワークを提案する。
事前学習されたLarge Language Modelの知識を使用して、CLIPのような事前学習されたVision-Language Modelをマルチラベル分類に適応させるプロンプトを学ぶ。
本フレームワークは,新しいカテゴリー認識のための複数の事前学習モデル間の相乗効果を探索する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-02T13:43:32Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - ECKPN: Explicit Class Knowledge Propagation Network for Transductive
Few-shot Learning [53.09923823663554]
クラスレベルの知識は、ほんの一握りのサンプルから人間が容易に学習することができる。
本稿では,この問題に対処する明示的クラス知識伝達ネットワーク(ECKPN)を提案する。
筆者らは,4つの数ショット分類ベンチマークについて広範な実験を行い,提案したECKPNが最先端の手法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2021-06-16T02:29:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。